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Abstract 
 

This paper presents the development of a keystroke 

dynamics-based user authentication system using the 

ARTMAP-FD neural network. The effectiveness of ARTMAP-

FD in classifying keystroke patterns is analyzed and 

compared against a number of widely used machine learning 

systems. The results show that ARTMAP-FD performs well 

against many of its counterparts in keystroke patterns 

classification. Apart from that, instead of using the 

conventional typing timing characteristics, the applicability 

of typing pressure to ascertaining user’s identity is 

investigated. The experimental results show that combining 

both latency and pressure patterns can improve the Equal 

Error Rate (ERR) of the system.  

 

Keywords: Keystroke dynamics, typing biometrics, novelty 

detection, ARTMAP-FD, Fuzzy ARTMAP 

 

1. Introduction 
Keystroke dynamics, sometimes also known as typing 

biometrics is a type of behavioural biometric technology that 

authenticates individuals based on distinct keystroke patterns.  

The underlying assumption is that each individual presents a 

unique typing pattern when using the keyboard to enter 

words that the user is familiar with, for example, passwords 

and user or account names.  The keystroke patterns may 

come in the form of the timing delays between successive 

key pairs, duration while pressing a key, or even the pressure 

exerted on individual keys on the keyboard. 

In most real-world situations the number of typing 

patterns from intruders is basically infinite and it is hard to 

collect intruders’ samples when the system is first 

implemented. Therefore it may not be feasible to train a 

typing biometric system on all possible data classes that the 

system is likely to encounter. Given the fact that keystroke 

patterns from intruders are not known at the time of training 

the model, only single class information from legitimate user 

is available for the learning process. Therefore, typical 

discrimination-based or binary classifiers that require 

training samples from positive and negative classes might not 

be suitable for typing biometric systems. In this paper, 

ARTMAP-FD (FD: Familiarity Discrimination) neural 

network [1] is employed for keystroke pattern classification 

because it only requires samples from a legitimate user to 

build an accurate model. ARTMAP-FD denotes typing 

patterns of a valid user as normal patterns, whereas an 

intruder’s typing patterns are denoted as novel patterns. 

Similar to other novelty detectors, the main function of 

ARTMAP-FD is to define closed boundaries for normal 

patterns and yet, be able to detect novel patterns that are 

outside the boundaries. 

ARTMAP-FD is an extension of the Fuzzy ARTMAP 

(FAM) neural network [2] with improvement in detecting 

patterns from unfamiliar classes. It also inherits the 

advantages from FAM, such as fast convergence and on-line 

learning capability. The method has been tested on simulated 

radar range profile data with fairly good results [1]. In this 

study, the applicability of ARTMAP-FD to keystroke 

patterns classification is examined by using keystroke data 

collected from one hundred participants. The results obtained 

are then compared with a statistical method proposed by 

Joyce and Gupta (JG) [3], Gaussion density estimator, Parzen 

window density estimator, K-Nearest Neighbour (KNN), 

Support Vector Domain Description (SVDD) [4], one-class 

Support Vector Machine (1-SVM) [5] and the original FAM 

network. Apart from that, the paper also investigates the use 

of combined keystroke pressure and keystroke latency for the 

verification process, and compares the performance with 

those from conventional timing-based techniques. 

The organisation of this paper is as follows. A review of 

previous work is given in Part 2. Details of the experimental 

procedure are provided in Part 3. Part 4 summarises the 

dynamics of ARTMAP-FD for novelty detection. The results 

are reported and discussed in Part 5. Finally, the paper 

concludes with some suggestions for further investigation in 

Part 6. 
 

2. Previous Work 
This section highlights some methods that have been 

proposed in the past. There are two metrics that are 

commonly used to assess the reliability of a biometric system, 

namely False Acceptance Rate (FAR) and False Rejection 

Rate (FRR). Since different values of the operating threshold 

may result in different values of FRR and FAR, in order to 

ensure comparability across different systems, another metric 

that is commonly used is Equal Error Rate (EER), the point 

at which both FAR and FRR are equal. Some researchers 

have also used accuracy and error rate to measure the 

performance of their methods. 

Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 20,2010 at 04:27:52 EST from IEEE Xplore.  Restrictions apply. 



A number of learning strategies have been proposed for 

typing patterns classification, which can be generally 

grouped as statistical methods [3][6] and neural network 

methods [7][8]. Some neural network approaches proposed 

for keystroke pattern classification include discrimination-

based, i.e., the classifiers require both intruders’ and 

legitimate users’ keystroke patterns in the learning phase. 

These approaches might be impractical as pointed out in the 

previous section. An example is as follows. 

In [8], Obaidat and Sadoun carried out a comprehensive 

study of different statistical-based and neural network-based 

classification methods that can be used with keystroke 

dynamics. They concluded that neural network-based 

methods gave better results as compared with statistical 

methods in keystroke patterns classification. Encouraging 

results were reported as neural network-based methods are 

able to achieve zero FAR and zero FRR when both latency 

and duration were combined as features. However, there is 

concern that the results obtained may be over optimistic. 

Besides using the legitimate users’ samples for training, 

Obaidat and Sadoun also divided the same set of intruders’ 

samples for learning and testing purposes. In other words, the 

neural networks were trained in advance not only by using 

legitimate users’ sample, but also intruders’ samples. Hence, 

the classifier is expected to produce better results with low 

FAR as the classifier now has prior knowledge of the 

intruders’ patterns. 

On the other hand, some statistical methods require only 

the legitimate user’s patterns for learning. For instance, the 

statistical method proposed by Joyce and Gupta [3] 

constructs a mean reference signature based on eight latency 

vectors provided by a legitimate user. During verification, an 

unknown typing pattern is compared with the mean reference 

signature to determine the similarity between the two profiles. 

A user would login successfully if the magnitude of 

difference is less than the declared threshold. Note that the 

learning process used here does not involve any typing 

patterns from the imposter. 

Apart from that, there are other novelty detection methods 

introduced for keystroke dynamics-based system, such as 

Auto-Associative neural network (ASNN) [9], Support 

Vector Data Description (SVDD) [10], and one-class 

Learning Vector Quantization (1-LVQ) [11]. These 

approaches employed only the keystroke information from 

the legitimate users in the training stage. 
 

3. Experimental Procedure 
In order to capture the typing pressure patterns, a normal 

keyboard was modified into a pressure sensitive keyboard by 

adhering pressure piezoresistive force sensors underneath the 

keyboard matrix. A pressure sensor is analogous to a variable 

resistor in which its resistance changes in accordance with 

the amount of force exerted on its sensing surface. A force-

to-voltage circuit was used to convert the resistance into 

discrete voltage signals ranging from 0 to 10 volts. Next, the 

voltage signals were acquired into the processing unit by 

using a data acquisition card for subsequent analysis such as 

pre-processing and feature extraction. 

Ideally, a keystroke pressure pattern should rest on the 

horizontal line y = 0 when the keys are not pressed. However, 

due to unwanted forces exerted by the base plate and face 

plate of the keyboard, the raw pressure signals present an 

elevated and non-constant baseline. In order to ensure the 

comparability between different samples, the baseline must 

be subtracted from each raw pressure signal. Firstly, spurious 

peaks were removed from the pressure patterns using moving 

averages of ks nearest neighbours. The value of ks is presently 

set at 20. The removal of baseline was achieved by 

subtracting from a pressure signal, an estimate of its varying 

minimum values. In this study, the robust local regression 

method reported in [12] was applied to estimate the varying 

minimum values of the pressure pattern. This was achieved 

by fitting a local regression to the local minima. First, for 

each pressure pattern, the local minima were found by using 

a moving window. Next, a local regression to data below the 

local quantiles was fitted for each pressure pattern. Finally, 

the estimated baseline was subtracted from each pressure 

signal. 

After baseline subtraction, a Fast Fourier Transform (FFT) 

was deployed to transform the pressure discrete time signals 

into frequency domain signals. The resulting outputs 

contained both the magnitude and phase information, but 

only the magnitude information was used for subsequent 

feature extraction. After careful examination, a total of nine 

features were extracted from the frequency domain signal, as 

shown in Table 1. 

 
Table 1. Features extracted from keystroke pressure 

No. Name of Feature No. Name of Feature 

1 Arithmetic mean 6 Fundamental frequency 

2 Root mean square 7 Energy 

3 Peak 8 Kurtosis 

4 Signal in noise & distortion 9 Skewness 

5 Total harmonic distortion   

 

During the data collection session, a program was 

developed to collect keystroke latency and keystroke pressure 

from a total of one hundred computer users. Keystroke 

latency data samples were captured at an accuracy of 

milliseconds (ms). There was no specific range for the 

latency as it relies on the speed of typing. The participants 

were requested to familiarise themselves with the password 

“try4-mbs” prior to the actual data collection session. The 

use of a common password among all participants is to 

ensure the comparability of typing patterns of the same 

password from different individuals. A total of ten timing 

vectors and ten pressure vectors were collected from each 

participant. 

 

4. Keystroke Patterns Classification 
This section provides description on ARTMAP-FD with 

emphasis on its familiarity discrimination mechanism. Since 

ARTMAP-FD and FAM share a number of common features, 

this section will commence with the explanation on FAM and 

followed by the enhancements introduced in ARTMAP-FD.  

FAM is a supervised neural network that comprises of 

two fuzzy Adaptive Resonance Theory (ART) modules 

designated as ARTa and ARTb, which create stable 
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recognition categories in response to arbitrary sequences of 

input patterns. Both ART modules are linked together by a 

map field module, Fab, an associative learning network to 

establish an association between input patterns and target 

classes C. The following is a brief explanation on the typical 

operation in ARTa, which also occurs in ARTb. In the 

training stage, the original M-dimensional input vector a is 

complement-coded into a 2M-dimensional vector A: 

( ) ( )MMc
aaaaaaA −−≡= 1,...,1,,...,, 11  (1) 

A is propagated from the input layer F1
a to the dynamic 

output layer F2
a through a set of adaptive weights wj. 

Activation of the jth F2
a node is determined by the choice 

function Tj(A) as defined in Equation (2), with wj
a denoting 

the weight vector of the jth F2
a node. 
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According to the winner-take-all strategy, the node with 

the highest response value, denoted as node J, is selected as 

the winning node, while all other nodes j ≠ J are deactivated. 

The winning node J remains active if the match function of 

the chosen category meets the vigilance criterion: 

a

a

J
ρ≥

∧

A

wA
, (3) 

where  ∈ [0, 1] is the baseline vigilance parameter of ARTa  

If the vigilance test is satisfied, the network will proceed 

to the map field association. However, if the existing winning 

node fails to predict the output class, i.e., c(J) ≠ C, a match 

tracking process is triggered until the best winning node that 

satisfies both the ARTa and map field vigilance test is found. 

Subsequently, learning takes place by updating the weight 

vector of the winning node J in ARTa. The learning mode of 

the network is determined by the learning parameter, βa. 

There are two learning modes: fast learning (βa = 1 for all 

times) and fast-commit slow recode learning (βa = 1 for an 

uncommitted node and βa < 1 for a committed node).  

In the testing stage, an input pattern that activates node J 

is assigned to class C = c(J). In fact, FAM may be used for 

novelty detection by checking the vigilance criterion as 

defined in Equation (3). It can be re-written as a familiarity 

function, φ(A) as shown in Equation (4). In this context, the 

baseline vigilance parameter of ARTa,  is equivalent to the 

decision threshold γ. An input pattern is categorised as 

“familiar” if φ(A) is greater than γ. 
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Given an input a ∈ RJ, where RJ is the hyperbox that 

encloses all the vectors a that chosen category J during 

training, the function defined by Equation (4) sets  

φ(A) = | | / |A|. The result may not be accurate because the 

value of φ(A) may be large or small depending on the value 
of |A| [1]. In addition, accurate novel detection using FAM 

requires  to be very close to unity, which causes category 

proliferation during training [1]. These problems lead to the 

proposed improvements to the FAM algorithm. The training 

phase of ARTMAP-FD remains identical to FAM. The only 

difference is the computation of familiarity function, φ(A) as 
given in Equation (5). It is computed based on the choice 

function after a winner node J is selected and a class 

prediction C = c(J)  is made. In contrast to Equation (4), any 

input that chooses category J during testing is assigned the 

maximum familiarity value 1 if and only if it lies within RJ. 

As a result of this modification, better familiarity 

discrimination can now be estimated. In ARTMAP-FD, an 

input is predicted as class C if and only if φ(A) is larger then 

the threshold γ. Otherwise, the input is categorised as an 
unfamiliar pattern and no prediction is made. Note that the 

threshold γ is a user-defined parameter that is independent of 
the existing FAM’s parameters. 
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5. Results and Discussion 
Two experiments were carried out in this study. The 

objective of the first experiment is to compare the 

performances of ARTMAP-FD with some of its counterparts. 

The second experiment investigates the suitability of 

keystroke pressure for identity verification. Leave-one-out 

cross validation (LOOCV) was employed in both 

experiments. Here the legitimate user’s keystroke data set 

was separated into two partitions, whereby nine samples 

(from a total of ten samples) were used as training data and 

the remaining sample was retained to form a complete testing 

data set with typing patterns from intruders. The cross-

validation process is then repeated ten times with each of the 

ten legitimate user’s samples used exactly once as part of the 

testing data set. Following these partitions, the above steps 

were repeated one hundred times with each of the 

participants selected exactly once as the legitimate user. The 

results from the cross validation were averaged to produce a 

single estimated FRR and FAR. Furthermore, in order to 

investigate the performance of each novelty detector at 

different operating thresholds, experiments were conducted 

across different values of trade-off parameter ranging from 0 

to 1. Neither the intruders’ samples nor other testing samples 

were involved in the prediction model building process in 

order to avoid biased results. 

The results of the first experiment were summarised in 

Table 2. The Gaussian density estimator, Parzen window 

density estimator, KNN, and SVDD were implemented by 

using the Data Description Toolbox [13]. The best FRR and 

FAR were reported instead when the EER cannot be found 

within the range of the operating threshold. As shown in 

Table 2, both the Gaussian method and Parzen method 

exhibited extremely high FRR across different operating 

thresholds. On the contrary, SVDD and 1-SVM gave lower 

FRR but with a considerably higher FAR. The high FAR of 

SVDD and 1-SVM might due to the large space enclosed by 

the decision boundaries. Although JG is a simple statistical 

method, it gave noticeably good results among the various 

methods studied here. The performance of KNN was slightly 
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inferior when compared with that of JG. Experiments on 

FAM were conducted using two different settings, i.e., fast 

learning and fast-commit slow-recode learning. Both settings 

of FAM performed better than KNN, but performed poorer 

than JG. Four different settings of ARTMAP-FD were tested. 

The best performance was obtained with  = 0 in the fast 

learning mode. 

In the second experiment, keystroke pressure, keystroke 

latency, and the combination of both features were used as 

the inputs to ARTMAP-FD, respectively. The main goal is to 

examine the differences of the classifier’s performance while 

using different sets of the aforementioned input features. As 

shown in Table 3, even though the keystroke pressure 

performed slightly poorer than keystroke latency, the 

combination of both features improved the overall 

performance with EER of 11.78%. 

 
Table 2. Comparison of Equal Error Rate (EER) 

a. RBF = Radial Basis Function, b. K = number of neighbours 

 
Table 3. Performance using keystroke pressure features and latency 

features 

Features EER (%) 

Pressure 16.50 

Latency 14.94 

Pressure + Latency 11.78 

 

6. Conclusions and Further Works 
The work presented in this paper investigates the use of 

ARTMAP-FD as a novelty detection method for keystroke 

patterns. A series of experiments were systematically carried 

out to compare the performance of ARTMAP-FD with other 

widely used novelty detectors. The performance of 

ARTMAP-FD and other methods were tested against a data 

set comprising keystroke pressure patterns and keystroke 

latencies from one hundred participants.  The experimental 

results showed that ARTMAP-FD outperformed other 

novelty detectors in keystroke patterns classification.  

Applicability of individual’s typing pressure to 

determining the identity of a user has also been examined. 

The explanation of the development of pressure-sensitive 

keyboard has been given. The experimental results showed 

that the use of keystroke pressure patterns could improve the 

overall EER by fusing the conventional timing-based typing 

characteristics and pressure features in the frequency domain. 

Future work will focus on investigating the use of 

intruders’ samples to improve the performance of ARTMAP-

FD. Although the number of intruders’ samples is not 

sufficient to train the novelty detector, they may be useful to 

refine the boundaries of the normal class patterns. Another 

interesting direction is to explore the use of artificial 

intruders’ samples in training the classifier. The artificial 

intruders’ typing patterns are computed in such a way so that 

they are located very near to the closed boundaries in the 

normal class data space. The main purpose of generating 

intruder samples is to form an attraction region outside the 

closed boundaries so that novel patterns, which do not 

belong to the known class, will be “attracted” to fall in this 

rejection region. 
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