Feature Mining for Localised Crowd Counting

Ke Chen, Chen Change Loy, Shaogang Gong and Tao Xiang

School of Electronic Engineering and Computer Science
London E1 4NS, UK

1. Introduction

Crowd counting for public space safety and management; Applications include crowd control, public space design, pedestrian behaviour profiling.

2. Methodology

- Multivariate Ridge Regression for multi-hop regression learning (MORR):
 - Given the concatenated intermediate feature vector xi and the concatenated localised labelled ground truth y, Multivariate Ridge Regression is presented as
 \[
 \min \frac{1}{2} \left(W \mathbf{y} - \mathbf{b} \right)^T \mathbf{W} \left(W \mathbf{y} - \mathbf{b} \right)
 \]
 - where \(\mathbf{W} \in \mathbb{R}^{d \times K} \) and \(\mathbf{b} \in \mathbb{R}^{K} \) denote a weight matrix and a bias vector.

3. Experiments

- Table 2. Performance comparison between different methods and our multi-output ridge regression (MORR) model on global crowd counting.

4. Conclusion

- Future work will focus on exploring dynamic and temporal segmentation of crowd structure.

Table 1. Dataset properties:

<table>
<thead>
<tr>
<th>Data</th>
<th>(N_f)</th>
<th>(R)</th>
<th>FPS</th>
<th>D</th>
<th>Tp</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSD</td>
<td>2000</td>
<td>238 x 158</td>
<td>10</td>
<td>11–46</td>
<td>49885</td>
</tr>
<tr>
<td>Mall</td>
<td>2000</td>
<td>320 x 240</td>
<td><2</td>
<td>13–53</td>
<td>62325</td>
</tr>
</tbody>
</table>

Table 2. Performance comparison between different methods and our multi-output ridge regression (MORR) model on global crowd counting.

- Figure 5. Localised counting performance on two busy localised regions in the Mall dataset. Region 1 consists of Cells 11, 12, 19, and 23, while Region 2 includes Cells 43, 44, 51, and 55. Time-tr and Time-te denote the training time and testing time respectively.