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Abstract— In this work we consider the communication of
information in the presence of a causal adversarial jammer. In the
setting under study, a sender wishes to communicate a message to
a receiver by transmitting a codeword x = (x1, . . . , xn) bit-by-
bit over a communication channel. The sender and the receiver
do not share common randomness. The adversarial jammer can
view the transmitted bits xi one at a time, and can change up to a
p-fraction of them. However, the decisions of the jammer must be
made in a causal manner. Namely, for each bit xi the jammer’s
decision on whether to corrupt it or not must depend only on
xj for j ≤ i. This is in contrast to the “classical” adversarial
jamming situations in which the jammer has no knowledge of x,
or knows x completely. In this work, we present upper bounds
(that hold under both the average and maximal probability of
error criteria) on the capacity which hold for both deterministic
and stochastic encoding schemes.

I. INTRODUCTION

Alice wishes to transmit a message u to Bob over a binary-
input binary-output channel. To do so, she encodes u into a
length-n binary vector x and transmits it over the channel.
However, the channel is controlled by a malicious adversary
Calvin who may observe the transmissions, and attempts to
jam communication by flipping up to a p fraction of the bits
transmitted by Alice. Since he must act in a causal manner,
Calvin’s decisions on whether or not to flip the bit xi must
be a function solely of the bits x1, . . . , xi he has observed
thus far. This communication scenario models jamming by an
adversary who is limited in his jamming capability (perhaps
due to limited transmit energy) and is causal. This causality
assumption is reasonable for many communication channels,
both wired and wireless. Calvin can only corrupt a bit when it
is transmitted (and thus its error is based on its view so far).
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To decode the transmitted message, Bob waits until all the bits
have arrived.

In this paper we investigate the information-theoretic limits
of communication in this setting. We stress that in our model
Calvin knows everything that both Alice and Bob do – there
is no shared secret or common randomness (a model where
such a shared secret may be allowed has been considered in the
literature pertaining to Arbitrarily Varying Channels, discussed
further in Section I-A). However, we make no assumptions
about the computational tractability of Alice, Bob, or Calvin’s
encoding, decoding and jamming processes. Our main contri-
bution in this work is a converse that helps to make progress
towards a better understanding of the communication rates
(average number of bits per channel use) achievable against
a causal adversary. Specifically, we describe and analyze a
novel jamming strategy for Calvin and show that it (upper)
bounds the rate of communication regardless of the coding
strategy used by Alice and Bob. This jamming strategy results
in Calvin being able to force Bob’s average probability of
decoding error over all of Alice’s messages to be bounded
away from zero (and hence correspondingly also his maximum
probability of error).

A. Previous and related work

Many of the following works deal with related channels; we
restrict our discussion mostly to the binary-input binary-output
case, except where specifically indicated otherwise.
Coding theory model: A very strong class of adversarial
channels is one where Calvin is omniscient – he knows Alice’s
entire codeword x prior to transmission and can tailor the
pattern of up to pn bit-flips to each specific transmission.
This is the “ worst-case noise” model studied in coding
theory. In this model there is no randomness in code design,
and it is desired that Bob always decodes correctly. For
binary channels, characterizing the capacity has been an open
problem for several decades. The best known upper bound is
due to McEliece et al. [2] as the solution of an LP, and the
best known achievable scheme corresponds to codes suggested
by Gilbert and Varshamov [3], [4], which achieve a rate of
1 − H(2p). Improving either of these bounds would be a
significant breakthrough.1

1As is often the case, results for channels over “large” alphabets are
significantly easier. In the “intermediate” alphabet-size regime, wherein the
alphabet is of size at least 49, advances in Algebraic-Geometry codes over the
last three decades (see [5] for a survey) have resulted in codes exceeding the
Gilbert-Varshamov bound. For alphabets larger than n, the bound of 1− 2p
due to Singleton [6] is known to be achievable in a computationally efficient
manner via Reed-Solomon codes [7].



Information theory model: A much weaker class of ad-
versarial channels is one where Calvin generates bit flips in
an i.i.d. manner with probability p and Bob must decode
correctly “with high probability” over the randomness in
Calvin’s bit-flips. The original work of Shannon [8] effectively
characterized the capacity of this binary symmetric channel
BSC(p). The capacity 1 − H(p) in Shannon’s setting (for
crossover probability p) is strictly greater than that of the
coding theory model.
Causal adversarial model: The class of channels considered
in this work, i.e., that of causal adversaries, falls in between
the above two extremes. In one direction this is because a
causal adversary is certainly no stronger than an omniscient
adversary, since he cannot tailor his jamming strategy to
take into account Alice’s future transmissions. Indeed, the
work of Haviv and Langberg [9] indicates that (for 2p <
H−1(1/2) � 0.11) rates strictly better than those achievable
by Gilbert-Varshamov codes [3], [4] against an omniscient
adversary are achievable against a causal adversary. However,
since it is still unknown whether Gilbert-Varshamov codes are
optimal against omniscient adversaries, it is unknown whether
causal adversaries are indeed strictly weaker than omniscient
adversaries. Nonetheless, the Gilbert-Varshamov bound and
the bound of [9] indicate that for p < 1/4 the capacity under
causal adversaries is bounded away from zero.

In the other direction, the causal adversarial model under
study is at least as strong as the information theoretic model
in which Calvin generates bit flips in an i.i.d. manner. Specif-
ically, if p ≤ 1/2, for any δp > 0 and sufficiently long
block-length n a causal adversary can ignore the transmitted
codeword seen so far and just mimic the behavior of a binary
symmetric channel BSC(p − δp) – with high probability he
does not exceed his budget of pn bit-flips. Similarly, if p >
1/2, Calvin simply mimics the behavior of a BSC(1/2). This
implies that when communicating in the presence of causal
adversaries with jamming capabilities that are parametrized
by p, 1 −H(p) is an upper bound on the achievable rate for
p ≤ 1/2, and no positive rate is achievable for p > 1/2.
Improving over this naı̈ve upper bound (and hence narrowing
the gap to the lower bound of [9]) is the focus of the paper.

The improved upper bounds we present hold for general
coding schemes that allow Alice to encode a message u to
one of several possible codewords x ∈ {x(u, r)}, where r
is a random source available to Alice but unknown to either
Bob or Calvin. Such general coding schemes are referred to
as stochastic coding schemes. We stress that in such schemes
there is no shared randomness between Alice and Bob, and
the source of randomness in Alice’s encoder is solely known
to Alice.
Arbitrarily Varying Channels: Our model is a variant of
the arbitrarily varying channel (AVC) model [10]. The AVC
model where the adversary has access to the entire codeword
was considered by Ahlswede and Wolfowitz [11], [12] but
received little attention since [13, Problem 2.6.21]. General
AVC models have been extended to include channels with
constraints on the adversary (such as pn bit flips) for cases
where the adversary has no access to the codeword [14], or has
access to the full codeword [15]. For binary channels in which

the jammer has knowledge of the entire codeword x, [16]
showed that O(log n) bits of common randomness is sufficient
to achieve the optimal rate of 1−H(p) (and the work in [17]
investigated computationally efficient constructions of such
codes). However, issues of causality have only been studied
in the context of randomized coding (when the encoder and
decoder share common randomness), but not for deterministic
codes or stochastic encoding.

Delayed adversaries: The delayed adversary model was stud-
ied in [18] and [19]. In this model, the jammer’s decision on
whether to corrupt xi must depend only on xj for j ≤ i−Dn
for a delay parameter D ∈ [0, 1]. The case of D = 0 is exactly
the causal setting studied in this work, and that of D = 1
corresponds to the “oblivious adversary” studied by Lang-
berg [18]. In this oblivious adversary setting the work of [20]
demonstrates computationally efficient code constructions that
achieve information-theoretically rate-optimal throughput of
1−H(p) for all p < 1/2.

In a different line of work, Dey et al. [19] showed that
for a large class of channels, the capacity for delay D > 0
equals that of the constrained AVC model [21]. In particular,
a positive delay implies that the optimal rate 1 − H(p) is
achievable against a delayed adversary over a binary-input
binary-output channel. In this paper we show that a causal
adversary is strictly stronger than a delayed adversary with
D > 0 for all p > 0.0804. For p smaller than this value our
techniques do not help separate the capacity regions of these
two models.

Causal and delayed adversaries for “large alphabets”: In
the large alphabet setting (where the alphabet-size is allowed
to grow without bound with increasing block-length), Dey et
al. [22] give a full characterization of the capacity-region of
several variants of both the causal adversary and the delayed
adversary models. They further give computationally efficient
codes achieving every point in the capacity regions for the
models considered. In general, in the large alphabet regime
code design is easier than in the binary alphabet regime
(that is the primary focus of this work) since with large
alphabets, a “few random hashes” can be hidden inside each
symbol with asymptotically negligible rate-loss. These hashes
aid the decoder in detecting the adversarial attack pattern and
correcting for it. In the binary alphabet setting this technique
is not applicable – this is one of the bottlenecks in further
narrowing the gaps between outer and inner bounds for the
model considered in this work.

Previous attacks: This work continues our preliminary work
on binary causal channels [23] (and a related result of Gu-
ruswami and Smith [20]), which proposed an upper bound us-
ing the so called “wait-and-push” attack. This work improves
on this earlier work in two aspects – specifically the bound



presented is tighter, and holds also for stochastic encoding. 2

B. Main result

Our improved bounds are given in the following theorem,
and are depicted (in comparison with the previous bounds) in
Figure 1. For any p̄ ∈ [0, p], let α(p, p̄) = 1 − 4(p − p̄). In
what follows, C(p) is the capacity of the causal channel under
study. For precise definitions and model see Section II.

Theorem 1 For p ∈ [0, 1/4], the capacity C(p) of a binary
causal adversary channel with constraint p satisfies:

C(p) ≤ min
p̄∈[0,p]

[
α(p, p̄)

(
1−H

(
p̄

α(p, p̄)

))]
.

For p > 1/4 the capacity C(p) = 0.

A few remarks are in order. Notice that in the regime p̄ ≤ p ≤
1/4 it holds that p̄ ≤ α(p, p̄) and thus p̄

α(p,p̄) in the expression
of Theorem 1 is at most of value 1. We show in Appendix I
that the optimum p̄ in the computation of C(p) is

min

⎧⎨
⎩p,

3(1− 4p)(
2 +

3
√

1592 + 24
√
33 +

3
√

1592− 24
√
33
)
⎫⎬
⎭

� min

{
p,

1− 4p

8.4445

}
.

Namely, for p greater than approximately 0.0804, the capacity
C(p) is bounded away from 1−H(p) and for p less than this
value our bound equals 1 − H(p) (in the latter case we get
p̄ = p). For p = 1/4 the new strategy we propose for Calvin
shows that no positive rate is achievable; when p > 1/4 Calvin
can simply mimic the case p = 1/4.

C. Techniques and Proof Overview

To prove Theorem 1 we show that no matter which en-
coding/decoding scheme is used by Alice and Bob, there
exists a strategy for Calvin that does not allow communication
at rate higher than C(p) . Specifically, we demonstrate that
whenever Alice and Bob attempt to communicate at a rate
higher than C(p), there exists a causal jamming strategy (that
in general depends on Alice and Bob’s encoding/decoding
strategy) that allows Calvin to enforce a constant probability
of error bounded away from zero. More precisely, for any

2For completeness, we specify the two major differences between this paper
and [23]. First, we propose a different two-phase attack (“babble-and-push”)
which gives a tighter outer bound than the previous attack (“wait-and-push”).
In “wait-and-push,” Calvin passively eavesdrops in the first phase uses this
information to design an error vector to confuse Bob in the second phase.
In our new attack, Calvin instead injects noise in the first phase to increase
Bob’s uncertainty about Alice’s transmissions. However, we must carefully
choose the number of bit-flips Calvin injects in this “babble” phase to obtain
a tighter outer bound, because Calvin must trade-off between using bit-flips
to increase Bob’s uncertainty and to push to an alternative codeword in the
second phase. The second improvement in this paper is that we prove that
the “babble-and-push” attack works even when Alice and Bob use stochastic
encoding (i.e., for each message u she has, Alice may choose to transmit one
of multiple possible codewords x(u), with an arbitrary random distribution
over the set of codewords). Our bounds therefore hold for general codes, as
opposed to previous work [23], where the outer bound was proved for codes
in which each message u corresponded to a unique x(u) deterministically
chosen by Alice.
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Figure 1. We plot previous bounds related to the channel at hand compared to
our bound. The upper bound of 1−H(p) corresponds to the binary symmetric
channel. The lower bound [9] (denoted HL) is based on an evaluation of the
parameters specified by Haviv and Langberg [9] and it slightly improves on
the Gilbert-Varshamov bound 1 − H(2p). Our improved bound appears in
between.

block-length n, any ε > 0 and any encoding/decoding scheme
of Alice and Bob of rate

(
C(p) +

√
c
n

)
+ ε, Calvin can cause

a decoding error probability of at least εO(1/ε).
At a high level, Calvin uses a two-phase “babble-and-

push” strategy. In the first phase of �(p) channel uses, Calvin
“babbles” by behaving like a BSC(p̄) for some p̄ chosen as
a function of p. In the second phase of n − �(p) channel
uses, Calvin randomly selects a codeword from Alice and
Bob’s codebook that is consistent with what Bob has received
so far. Calvin then “randomly pushes” the remaining part of
Alice’s codeword towards his selected codeword (i.e., in every
location in the “push” phase where Alice’s codeword bit differs
from his selected codeword, he adds a bit-flip with probability
half). A decoding error occurs if Calvin is able to push the
transmitted codeword half the distance towards the codeword
selected by Calvin (via a standard symmetrization argument
[14]).

Roughly speaking, the first phase allows Calvin to gain
information regarding which codeword was transmitted by
Alice, while the second phase allows Calvin to use this in-
formation in order to design a corresponding symmetrization-
based jamming strategy.

In Section III we present the proof of our main result,
that of the outer bound on the capacity of online adversaries.
Section IV then improves on this result (by giving a tighter
bound on the probability of error) for the special case of deter-
ministic encoders (rather than the general stochastic encoders
considered in Section III).

II. MODEL AND PRELIMINARIES

We first reprise some standard notation. Let dH(·, ·) denote
the Hamming distance function between two vectors (number
of locations in which two vectors of the same length differ).
The Hamming weight wtH(x) of a vector x is the Hamming



distance between that vector and the all-zeros vector. Let
log(.) denote the binary logarithm, here and throughout. As is
common, the notation H(A) is used to denote the (binary)
entropy of a random variable A, H(A|B) to denote the
conditional entropy of A given B, and I(A;B) to denote
the mutual information between A and B. Also, for any real
number number x ∈ (0, 1), H(x) denotes the binary entropy
function. Properties of and inequalities between these functions
are referenced at the point in the text where needed. The
indicator function 1(condition) takes value 1 if condition
is true, and 0 otherwise.

Let the input and the output alphabets of the channel be
X and Y respectively. For any positive integer k, let [k] =
{1, 2, . . . , k}. We let U = [2nR] denote Alice’s message
set, and U denote the message random variable uniformly
distributed in U . A deterministic code of rate R and block-
length n is a pair of maps Cd = (Φ,Ψ) where Φ : U → Xn

and Ψ : Yn → U are deterministic maps. The map Φ is called
the encoder and the map Ψ is called the decoder.

A code with stochastic encoding and decoding of rate R
and block-length n is a pair of maps Cs = (Φ,Ψ) where
Φ : U → Xn and Ψ : Yn → U are probabilistic maps.
The random map Φ gives a probability distribution ρ(·|u)
on Xn for every u ∈ U . The mapping Ψ(y) is a random
variable taking values from U . The encoding Φ is equivalently
represented by first picking a random variable R from a set
R according to a conditional distribution ρR|U(.|u), and then
applying a deterministic encoder map Φ : U × R → Xn.
Note that our definition does not preclude there existing pairs
(u, r) and (u′, r′) such that Φ(u, r) = Φ(u′, r′). As we are
addressing upper bounds on the capacity C(p) in this work, it
is crucial to prove our results in the stochastic setting above
– any bounds proved in the stochastic setting also hold in the
deterministic setting.

A causal adversarial strategy of block-length n is a se-
quence of (possibly random) mappings Adv = {f (i)

C : i ∈
[n]}. Here each f

(i)
C : X i × E i−1 → E depends on C,

and for each time i ∈ [n] chooses an action at time i,
ei = f

(i)
C (x1, . . . , xi) ∈ E – the inputs to f

(i)
C are the past and

current channel inputs (x1, x2, . . . , xi) and its own previous
actions (e1, e2, . . . , ei−1). The resulting channel output at time
i is yi = xi + ei. In our setting E = {0, 1}. The strategy
obeys constraint p if the Hamming weight ‖e‖ =

∑n
i=1 ei

of e = (e1, . . . , en) is at most pn over the randomness in the
message, encoder, and strategy. For a given adversarial strategy
and an input codeword x, the strategy produces a (possibly
random) e and the output is y = x⊕e. Let PrAdv(y|x) denote
the probability of an output y given an input x under the
strategy Adv where this strategy might depend on (u, r) via the
adversary’s causal observations of x – to simplify notation we
henceforth do not make this explicit. When the block-length is
understood from the context, let Adv(p) denote all adversarial
strategies obeying constraint p.

The (average) probability of error for a code with stochastic

encoding and decoding is given by

ε̄ = max
Adv∈Adv(p)

1

2Rn

2Rn∑
u=1

∑
r∈R

ρR|U(r|u)
∑
y

Pr
Adv

(y|Φ(u, r)) Pr (Ψ(y) 	= u) , (1)

where the probability Pr (Ψ(y) 	= u) is over any randomness
in the decoder (but there is no conditioning on r since shared
randomness between the encoder and the decoder is not
allowed). We can interpret the errors as the error in expectation
over Alice choosing a message U = u and a codeword
x = Φ(u, r) according to the conditional distribution ρ(x|u).

A rate R is achievable against a causal adversary under
average error if for every δ > 0 there exist infinitely many
block-lengths {ni}, such that for each ni there is an ni

block-length (stochastic) code of rate at least R and average
probability of error at most δ. The supremum of all achievable
rates is the capacity. We denote by C(p) the capacity of the
channel corresponding to adversaries parametrized by p.

Consider a code of block-length n, rate R and error proba-
bility δ. We can, without loss of generality (w.l.o.g.), assume
that the encoding probabilities {ρ(x|u) : x ∈ {0, 1}n, u ∈
[2nR]} are rational. To see why this is the case, note that for
any small η > 0 we can find rational numbers {ρ̃(x|u)} such
that ρ(x|u)−η ≤ ρ̃(x|u) ≤ ρ(x|u). Now consider a code with
encoding probabilities q(x|u) = ρ̃(x|u) for x 	= 0 and assign
the remaining probability to 0. Under the same decoder, this
code has error probability at most δ + 2n+nRη, but since η
was arbitrary, the error is at most 2δ.

Now, for a given stochastic code, let N be the least common
multiple of the denominators of ρ(x|u) for all x, u. Each
codeword x of u can be treated as Nρ(x|u) copies of the
same codeword with conditional probability 1/N each. So we
can equivalently associate a random variable R with |R| = N
s.t. the conditional distribution ρR|U(·|u) is uniform, and the
encoding map Φ(u, ·) is not necessarily injective. Since we
consider the uniform message distribution, henceforth, w.l.o.g.,
we assume that the joint distribution ρU,R(·, ·) is uniform.

We use a version of Plotkin’s bound [24] in our proof. This
result gives an upper bound on the number of codes in any
binary code with a given minimum distance.

Theorem 2 (Plotkin bound [24]) There are at most
2dmin

2dmin−n codewords in any binary code of block-length n
with minimum distance dmin > n/2.

III. PROOF OF THEOREM 1

In this section we analyze an adversarial attack for the
general case of stochastic encoders and decoders. For fully
deterministic codes the analysis is more combinatorial and the
error bounds are somewhat better, as shown in Section IV.

Let p ∈ [0, 1/4] and let p̄ ≤ p. Without loss of generality
we assume that pn is an integer – if not, Calvin can simply
choose the largest p′ smaller than p such that p′n is an integer.
Asymptotically in n, the effect of this quantization on our outer
bound is negligible. Let ε > 0. In what follows we prove that



the rate of communication over the causal adversarial channel
(with parameter p) is bounded by

R ≤ C + ε, (2)

where

C = α(p, p̄)

(
1−H

(
p̄

α(p, p̄)

))
(3)

and

α = α(p, p̄) = 1− 4(p− p̄), (4)

as defined in Theorem 1. Namely, if (2)–(4) is violated, for any
sufficiently large block-length n, and any (n-block stochastic)
code Cs = (Φ,Ψ) shared by Alice and Bob, there exists an
adversarial jammer Adv that can impose a constant decoding
error. The decoding error we obtain will depend on ε > 0.

For p̄ = p, the adversary can generate a noise sequence to
simulate a BSC with crossover probability arbitrarily close to
p, which yields an upper bound of 1−H(p) on the capacity.
We therefore assume that p − p̄ > 0 and that ε < 2(p − p̄).
We show that for such ε > 0 there cannot exist a sequence of
codes (each with rate at least C+ε) of increasing block-length
n, such that the probability of error of these codes converges
to 0 asymptotically in n. To do so we will consider block-
lengths n ≥ Ω(ε−2). Note that this argument does not provide
lower bounds on the error of codes of a given block-length,
but instead shows a bound on the capacity. We elaborate on
this point at the end of the proof.

Our converse bound is based on a particular two-phase
adversarial strategy for Calvin that we call “babble-and-push.”
Let � = (α + ε/2)n and without loss of generality assume
� ∈ N. For a vector z of length n, let z1 = (z1, z2, . . . , z�) and
z2 = (z�+1, z�+2, . . . , zn). In what follows, z1 will correspond
to the first phase of Calvin’s attack, while z2 corresponds to
the second phase. For p > 0 the strategy is given as follows.

• (“Babble”) Calvin chooses a random subset Γ of p̄n
indices uniformly from the set of all (p̄n)-sized subsets
of {1, 2, . . . , �}. For i ∈ Γ, Calvin flips bit xi; that is, for
i ∈ {1, 2, . . . , �}, ei = 1 for i ∈ Γ and ei = 0 for i /∈ Γ.

• (“Push”) Calvin constructs the set of (u, r) that have
encodings x(u, r) = Φ(u, r) that are close to y1 =
y1, . . . , y�. Namely, Calvin constructs the set

By1
= {(u, r) : dH(y1,x1(u, r)) = p̄n}, (5)

and selects an element (u′, r′) ∈ By1
uniformly at ran-

dom. Calvin then considers the corresponding codeword
x′ = Φ(u′, r′). Given the selected x′, for i > �, if
xi 	= x′

i, Calvin sets ei equiprobably to 0 or 1 until∑i
j=1 ej = pn or i = n. Note that, under our assumption

(w.l.o.g.) of uniform ρU,R, the a posteriori distribution
of Alice’s choice (u, r) given y1 is also uniform in By1

.

We start by proving the following technical lemma that we
use in our proof.

Lemma 3 Let V be a random variable on a discrete finite
set V with entropy H(V ) ≥ λ, and let V1, V2, . . . , Vm be i.i.d.

copies of V . Then

Pr ({Vi : i = 1, . . . ,m} are all distinct)

≥
(
λ− 1− logm

log |V|
)m−1

(6)

Proof: Fix i ≤ m and a set v1, v2, . . . , vi ∈ V . Let
Ai = {v1, . . . , vi} and let Wi = 1(Vi+1 ∈ Ai), where 1(.)
denotes the indicator function. We can write the distribution
of V as a mixture:

Pr [Vi+i = v] =
∑

j∈{0,1}
Pr[Wi = j] · Pr[Vi+i = v|Wi = j]

We can bound from above the entropy of V as:

H(Vi+1) ≤ H(Vi+1|Wi) +H(Wi)

=
∑

j∈{0,1}
Pr[Wi = j]H(Vi+1|Wi = j) +H(Wi)

Since conditioning reduces entropy and the support of Vi+1

conditioned on Wi = 1 is at most i, we have

λ ≤ 1 + log i+ Pr[Wi = 0] log |V|.
Namely,

Pr[Wi = 0] ≥ λ− 1− log i

log |V| ≥ λ− 1− logm

log |V| .

But the event that each Vi is distinct is equivalent to the event
that for each i ∈ {2, . . . ,m}, Wi is 0.

To prove the upper bound, we now present a series of
claims. Let X denote the random variable corresponding to
Alice’s input codeword and let Y be the output of the channel.
Thus X1 ∈ {0, 1}� is Alice’s input during the “babble” phase
of length � and X2 is her input during the “push” phase; the
randomness comes from the message U and the stochastic
encoding. Similarly, Y1 is the random variable corresponding
to the � bits received by Bob during the “babble” phase, and
Y2 the n − � bits of the “push” phase. Let Adv denote the
“babble-and-push” adversarial strategy.

Let

A0 = {y1 : H(U|Y1 = y1) ≥ nε/4},
where the entropy H(U|Y1 = y1) is measured over the
randomness of the encoder, the message, and any randomness
in Calvin’s action during the “babble” phase. Further, let the
event E0 be defined as

E0 = {Y1 ∈ A0}. (7)

Claim 4 For the “babble-and-push” attack Adv,

Pr
Adv

(E0) ≥ ε/4. (8)

Proof: By the data processing inequality (U → X1 →
Y1 form a Markov chain and hence I(U;Y1) ≤ I(X1;Y1)),
and the choice of Calvin’s strategy, we have

I(U;Y1) ≤ I(X1;Y1)

≤ �(1−H(p̄n/�))

= (αn+ εn/2)

(
1−H

(
p̄

α+ ε/2

))



Therefore

H(U|Y1) ≥ H(U)− n(α+ ε/2)

(
1−H

(
p̄

α+ ε/2

))

≥ n
(
ε+ α

(
1−H

( p̄
α

)))
− n(α+ ε/2)

(
1−H

(
p̄

α+ ε/2

))

= nε/2 + n

(
(α+ ε/2)H

(
p̄

α+ ε/2

)

− αH
( p̄
α

))

≥ nε/2.

Here the first inequality follows from the definition of con-
ditional entropy, the second from the assumption underlying
this proof by contradiction that nR (and hence H(U)) violates
(2)–(4), and the third from the fact that the function αH (p̄/α)
is monotonically increasing in α since the function’s derivative
with respect to α equals log(α/(α − p̄)) which is always
positive. Thus the expected value of H(U|Y1 = y1) over y1

is at least nε/2, and the maximum value of H(U|Y1 = y1)
is nR. Applying the Markov inequality to the random variable
nR−H(U|Y1 = y1), we see that

Pr [nR−H(U|Y1 = y1) > nR− nε/4]

<
nR− nε/2

nR− nε/4

= 1− ε/4

R− ε/4
,

and hence

Pr [H(U|Y1 = y1) ≥ nε/4] ≥ ε/4

R− ε/4
.

Using the fact that R ≤ 1 yields the result.
Now consider drawing m pairs (Ui, Ri) from By1

i.i.d.
∼ ρU,R|y1

(which happens to be uniform). Note that the
marginal distribution of Ui is also i.i.d. ∼ ρU|y1

, which is
not necessarily uniform. Let

E1 = {{U1, U2, . . . , Um} are all distinct} . (9)

Claim 5 Let ρU|y1
be the conditional distribution of U given

y1 under Adv. Let U1, U2, . . . , Um be m random variables
drawn i.i.d. according to ρU|y1

. Then for large enough n,

Pr(E1 | E0) ≥ (ε/5)m−1. (10)

Proof: The proof follows from Claim 4 and Lemma 3
by using λ = nε/4, V = U , and the fact that there are
at most 2n messages, so |V| ≤ 2n. The lower bound in (6)

then becomes
(

nε/4−1−logm
n

)m−1

. For fixed m there exists

a sufficiently large n such that ε/4 − (1 + logm)/n > ε/5.

The preceding two claims establish a lower bound on the
probability that Y1 takes a value such that the distribution of
the message U conditioned on Y1 has sufficient entropy. For
such values y1 of Y1, we now use the fact that Alice’s pair

(u, r) is uniform in By1
to analyze the probability that Calvin’s

“push” attack succeeds. Let U′ and X′ denote the random
choice of Calvin’s message and codeword in the “push” phase.
We show that the following two events occur with probability
bounded away from zero:

E2 = {U′ 	= U} (11)

E3 = {dH (X2,X
′
2) ≤ 2(p− p̄)n− εn/8} (12)

The first event is that Calvin chooses a different message than
Alice and the second is that he chooses a codeword that is
close enough to Alice’s. The occurrence of the first event
ensures that the codeword Calvin chooses to try to confuse
Bob into thinking might have been transmitted corresponds
to a message u′ different than Alice’s actual message u. The
occurrence of the second event ensures that the two codewords
chosen (x2 chosen by Alice, and x′

2 by Calvin) are “close
enough” for Calvin to be able to push Bob’s received codeword
halfway between x2 and x′

2.
Claim 6 For the “babble-and-push” attack Adv,

Pr
Adv

(E2 and E3 | E0) ≥ εO(1/ε). (13)

Proof: Conditioned on E0, the realization y1 satisfies
H(U|Y1 = y1) ≥ εn/4. We first use Claim 5 to lower
bound the probability that E2 holds. First consider randomly
sampling a set of mutually independent pairs S = {(ui, ri) :
i ∈ [m]} uniformly from By1

, and let Xi be the codeword for
(ui, ri).

Claim 5 shows that with probability at least (ε/5)m−1, all
the messages in S are distinct. In particular, this shows that

Pr
Adv

(E2 | E0) ≥ (ε/5).

Turning to E3, applying Claim 5 for general m shows that
the probability that m draws from the conditional distribution
ρU|y1

yield unique messages is lower bounded by (ε/5)m−1.
Plotkin’s bound [24] (reprised in Theorem 2) shows that there
do not exist binary error-correcting codes of block-length
n − � and minimum distance d with more than 2d

2d−(n−�)

codewords. Setting m = 17/ε, this bound implies that with
probability at least (ε/5)m−1 there must exist codewords x,x′

corresponding to (u, r) and (u′, r′) respectively (with u 	= u′)
within a distance d that satisfies

17

ε
≤ 2d

2d− (n− �)

Solving for d and using � = (1− 4(p− p̄)+ ε/2)n shows that
d satisfies

d ≤ 2(p− p̄)n
17

17 + ε
− εn

4

17

17 + ε
< 2(p− p̄)n− εn/8.

Let Δ = 2(p− p̄)n− εn/8.
Let γ be the fraction of pairs (u, r) and (u′, r′) in By1

that
satisfy E2 and E3. We would like to lower bound γ. A union
bound shows that the probability over the selection of S gives
the upper bound

Pr

(⋃
S

{dH(Xi,Xj) < Δ} and {Ui 	= Uj}
)

≤ m2γ.

(14)



However, the earlier argument shows that by selecting m =
17/ε pairs in S, we get a lower bound of (ε/5)m−1 on the
probability that (a) all {Ui} are distinct, and (b) at least one
pair Xi, Xj has distance less that Δ:

Pr

(
{all Ui ∈ S are distinct} and

⋃
S

{dH(Xi,Xj) < Δ}
)

≥ (ε/5)m−1. (15)

As the event analyzed in Equation (14) includes that ana-
lyzed in Equation (15), we have that

γ ≥ 1

m2

(ε
5

)m−1

=
172

ε2

(ε
5

)17/ε−1

.

Therefore, by the definition of γ, we conclude our assertion.

The next step is to show that Calvin does not “run out” of
bit flips during the second “push” phase of his attack. This
follows directly from Chernoff’s bound [25].

We now analyze Calvin’s action during the “push” phase.
This action can be viewed as being equivalent to the following
two stages. In the first stage, dH(X2,X

′
2) bits are drawn i.i.d.

Bernoulli-(1/2) – these bits comprise the intended error vector
ê. However, Calvin may not have the power to impose this
intended vector in the push phase if the weight of ê is too
large. In general, the bit-flips in Calvin’s actual error vector
e2 correspond to the components of ê up to the point that he
runs out of his bit-budget.

Let d be the distance between the X2 chosen by Alice and
X′

2 chosen by Calvin and let the event E4 be defined as

E4 =

{
wtH(ê) ∈

(
d

2
− εn

16
,
d

2
+

εn

16

)}
. (16)

Claim 7 For the “babble-and-push” attack Adv,

Pr
Adv

(E4 | E2, E3) ≥ 1− 2−Ω(ε2n). (17)

Proof: As d is the distance between the X2 chosen by
Alice and X′

2 chosen by Calvin, without any constraint, Calvin
would flip d/2 locations in expectation. Conditioned on E2

and E3, we have the following upper bound:

d

2
≤ (p− p̄)n− εn/16.

Assume that d/2 = (p − p̄)n − εn/16 (for smaller values of
d the bound is only tighter). By Chernoff’s bound [25], the
probability that the number of bit flips in ê (i.e., the Hamming
weight of ê) deviates from the expectation by more than εn/16
is at most 2−Ω(ε2n).

Note that the number of bit flips in the first phase of the
algorithm is exactly p̄n, and thus Claim 7 implies that with
high probability the total number of bit flips in ê in the second
phase will not exceed d

2 + εn
16 ≤ (p − p̄)n and will not be

significantly less than that expected (i.e., less than d
2 − εn

16 –
in this case Bob might be able to conclude that X′

2 was not
transmitted). If this is not the case, our analysis assumes Calvin
(in the worst case for him) fails to jam Alice’s transmission
to Bob.

Theorem 8 For any code with stochastic encoding of rate
R = C + ε, under Calvin’s “babble-and-push” strategy the
average error probability ε̄ is lower bounded by εO(1/ε).

Proof: The main idea behind the proof of our outer bound
is that conditioned on events E0, E2, E3, and E4, (whose
probabilities of occurrence are analyzed in Claims 4, 6, and 7),
Calvin can “symmetrize” the channel [14]. That is, Calvin can
choose to inject bit-flips in a manner so that Bob is unable
to distinguish between two possible codewords x and x′

(corresponding to different messages u and u′) transmitted by
Alice. Calvin does this by ensuring (with probability bounded
away from zero) that the codeword received by Bob, y, is
likely to equal either x+e or x′+e′ for two valid pairs (x, e)
and (x′, e′) of transmitted codewords and bit-flip vectors.

Let (u, r) denote the message and randomness of Alice, y1

be the received codeword in the “babble” phase, and (u′, r′) be
the message and randomness chosen by Calvin for the “push”
phase. Let ρ(y1, u, r, u

′, r′) be the joint distribution of these
variables under Alice’s uniform choice of (u, r) and Calvin’s
attack. For each y, let ρ(y|y1, u, r, u

′, r′) be the conditional
distribution of y under Calvin’s attack.

The error probability can be written as

ε̄ =
∑

y1,u,r,u′,r′
ρ(y1, u, r, u

′, r′)

∑
y2

ρ(y|y1, u, r, u
′, r′) Pr(Ψ(y) 	= u).

Let F be the set of tuples (y1, u, r, u
′, r′) satisfying events

E0, E2, and E3. Claims 4 and 6 show that ρ(F) ≥ (ε/4) ·
εO(1/ε). For (y1, u, r, u

′, r′) ∈ F , we have that u 	= u′, and
that x2(u, r) and x2(u

′, r′) are sufficiently close.
Assuming E4 holds, if y2 results from x2 via ê, then y2 may

also have resulted from x′
2 via êC (the binary complement of

ê). Since ê is generated via i.i.d. Bernoulli-(1/2) components,
ê and êC have the same probability.

Thus the conditional distribution is symmetric:

ρ(y|y1, u, r, u
′, r′) = ρ(y|y1, u

′, r′, u, r). (18)

Then for (y1, u, r, u
′, r′) ∈ F , by Claim 7,∑

y2∈G
ρ(y2|y1, u, r, u

′, r′) ≥ 1− 2−Ω(ε2n).

Now, returning to the overall error probability, let ρ(y1)
be the unconditional probability of Bob receiving y1 in the
“babble” phase, where the probability is taken over Alice’s
uniform choice of (u, r) and Calvin’s random babble e1. Since
the a-posteriori distribution of (u, r) and (u′, r′) given y1 are
independent and both uniform in By1

, the joint distribution
can be written as

ρ(y1, u, r, u
′, r′) = ρ(y1) · 1

|By1
|2

= ρ(y1, u
′, r′, u, r).

Recall that for any y2 ∈ G,

ρ(y2|y1, u, r, u
′, r′) = ρ(y2|y1, u

′, r′, u, r).



Thus,

2ε̄ ≥
∑
F

ρ(y1, u, r, u
′, r′)

( ∑
y2∈G

ρ(y2|y1, u, r, u
′, r′) Pr(Ψ(y1,y2) 	= u)

+
∑
y2∈G

ρ(y2|y1, u
′, r′, u, r) Pr(Ψ(y1,y2) 	= u′)

)

≥
∑
F

ρ(y1, u, r, u
′, r′)

∑
y2∈G

ρ(y2|y1, u, r, u
′, r′)

(Pr(Ψ(y1,y2) 	= u) + Pr(Ψ(y1,y2) 	= u′))

≥
∑
F

ρ(y1, u, r, u
′, r′)

∑
y2∈G

ρ(y2|y1, u, r, u
′, r′) (19)

≥ ε/4 · εO(1/ε) ·
(
1− 2−Ω(ε2n)

)
.

Our analysis implies a refined statement of Theorem 1.
Namely, let c be a sufficiently large constant. For any block-
length n, any ε > 0 and any encoding/decoding scheme of
Alice and Bob of rate

(
C(p) +

√
c
n

)
+ ε, Calvin can cause a

decoding error probability of at least εO(1/ε).

IV. IMPROVED BOUNDS FOR DETERMINISTIC CODES

We now present an alternative analysis for the case of
deterministic encoding. Without loss of generality, we assume
each codeword corresponds to a unique message in U so there
are 2Rn distinct equiprobable codewords in {x(u) : u ∈ U},
with a unique codeword for each message. The attack is
the same as in Section III. Apart from the simpler proof,
the analysis below gives a decoding error ε̄ proportional to
ε, which improves over the decoding error presented for
stochastic encoding appearing in the body of this work.

Using the notation of Section III, for any vector y1 consider
the set

By1
= {(x, e1) : x1 + e1 = y1, e1 = p̄n}. (20)

Here, e1 represents the potential error vector that Calvin im-
poses in the first stage of its attack on the transmitted codeword
x. Notice that the set By1

defined above is analogous to the
set By1

defined in Section III. Namely, for any message u
a pair (u, r) ∈ By1

in Section III corresponds to a pair
(x(u), e1) ∈ By1

defined above. We note that in the definition
above By1

∩By′
1
= φ for y1 	= y′

1 as we assume all codewords
to be distinct.

Claim 9 With probability at least 1/2 over the codeword x
sent by Alice and the actions of Calvin in the first stage of his
attack, the set By1

is of size at least 2εn/4/2.

Proof: The proof is obtained by the following counting
argument. The number of possible sets By1

is exactly 2� =
2αn+εn/2. The number of pairs (x, e1) for a codeword x and
an error vector e1 (to be applied in the first stage by Calvin)

is

2Rn

(
�

p̄n

)
≥ 2Rn

(
αn

p̄n

)
≥ 2Rn · 2αnH(p̄/α)−εn/4

≥ 2αn+3εn/4.

Here the first inequality follows from the fact that � ≤ αn,
the second inequality from the standard bound 2nH(k/n)/(n+
1) ≤ (nk) (for instance [26, Theorem 11.1.3]) and the fact that
n is sufficiently large with respect to 1/ε and hence 2−εn/4

is smaller than any polynomial in 1/(n + 1), and the third
inequality from the starting assumption that R is at least ε+
α(1 − H(p̄/α)). Thus, the average size of a set By1

is at
least 2εn/4. Consider all the sets By1

of size less than half the
average 2εn/4/2. The total number of codewords in the union
of these sets is at most

2� · 2εn/4/2 ≤ 2Rn

(
�

p̄n

)
· 1
2
,

which is half the number of (x, e1) pairs. As each pair
is chosen with the same probability, we conclude that with
probability at least 1/2 the pair (x, e1) appears in a set By1

which is of size at least 2εn/4/2. This completes the proof of
our assertion.

We now show that Claim 9 above implies that the transmit-
ted codeword x and the codeword x′ chosen by Calvin are
distinct and of small Hamming distance apart with a positive
probability (independent of n).

Claim 10 Conditioned on Claim 9, with probability at least
ε
64 , x 	= x′ and dH(x2,x

′
2) < 2(p− p̄)n− εn/8.

Proof: Consider the undirected graph G = (V , E) in
which the vertex set V consists of the set By1

and two nodes
x and x′ are connected by an edge if dH(x2,x

′
2) ≤ d =

2(p−p̄)n−εn/8. The set of codewords defined by the suffixes
of an independent set I in G corresponds to a binary error-
correcting code with block-length n− � = 4(p− p̄)n− εn/2
of size |I| and minimum distance d.

By Plotkin’s bound [24] (reprised in Theorem 2) there
do not exist binary error correcting codes with more than

2d
2d−(4(p−p̄)n−εn/2) + 1 codewords. Thus I, any maximal
independent set in G, must satisfy

|I| ≤ 2(2(p− p̄)n− εn/8)

2(2(p− p̄)n− εn/8)− 4(p− p̄)n+ εn/2
+ 1

=
16(p− p̄)

ε
≤ 16

ε
. (21)

By Turán’s theorem [27], any undirected graph G on |V|
vertices and average degree Δ has an independent set of size
at least |V|/(Δ + 1). This, along with (21) implies that the
average degree of our graph G satisfies

|V|
Δ+ 1

≤ |I| ≤ 16

ε
.

This in turn implies that

Δ ≥ ε|V|
16

− 1 ≥ ε|V|
32

.



The second inequality holds for our setting of n, since |V| is
of size at least 2εn/4. To summarize the above discussion, we
have shown that our graph G has large average degree of size
Δ ≥ ε|V |

32p . We now use this fact to analyze Calvin’s attack.
By the definition of deterministic codes, any valid codeword

in Xn is transmitted with equal probability. Also, by definition
both x (the transmitted codeword) and x′ (the codeword
chosen by Calvin) are in V = By1

. Hence both x and x′ are
uniform in By1

. This implies that with probability |E|/|V|2
the nodes corresponding to codewords x and x′ are distinct
and connected by an edge in G. This in turn implies that with
probability |E|/|V|2, x 	= x′ and dH(x,x′) < 2(p − p̄)n −
εn/8, as required. Now

|E|
|V|2 =

Δ|V|
2|V|2 ≥ ε

64
.

The preceding claims provide the same guarantees as Claim
6 appearing in the body of the paper, and so Claim 7 follows.
Namely, w.h.p., Calvin does not “run out” of his budget of
pn bit flips. We conclude by proving that given the analysis
above Bob cannot distinguish between the case in which x or
x′ were transmitted, using a similar symmetrization argument.

Theorem 11 For any code with deterministic encoding and
decoding of rate R = C + ε, under Calvin’s “babble-
and-push” strategy the average error probability ε̄ is lower
bounded by ε

256

(
1− 2−Ω(ε2n)

)
Proof: Let u be the message chosen by Alice, u′ be the

message chosen by Calvin, ρ(y1, u, u
′) be the joint distribu-

tion of the output during the “babble” phase and these two
messages, and ρ(y|y1, u, u

′) be the conditional distribution of
the output on the result of the “babble” phase.

Let G′ be the set of y2 such that Claim 7 is satisfied for
x2(u). As in the arguments of Theorem 8, Calvin’s attack is
symmetric, so that

ρ(y1, u, u
′) = ρ(y1, u

′, u),

and therefore we have∑
y2∈G′

ρ(y|y1, u, u
′) ≥ 1− 2−Ω(ε2n).

Let F be the set of tuples (y1, u, u
′) satisfying Claim 9 and

Claim 10. Following the analysis in Theorem 8, from (20) and
applying Claims 9 and Claim 10, we have

2ε̄ ≥
∑
F

ρ(y1, u, u
′)
(
1− 2−Ω(ε2n)

)

≥ ε

128

(
1− 2−Ω(ε2n)

)
.

Dividing both sides by 2 yields the result.

V. CONCLUDING REMARKS

In this paper we presented a novel upper bound on the
rates achievable on binary additive channels with a causal
adversary. This model is weaker than the traditional worst-
case error model studied in coding theory, but is stronger than
an i.i.d. model for the noise. Indeed, our results show the

binary symmetric channel capacity 1−H(p) is not achievable
against causal adversaries. By contrast, previous work shows
that a delay of Dn (with D a positive constant in (0, 1]) for
the adversary allows Alice and Bob to communicate at rate
1−H(p). Thus the causal adversary is strictly more powerful
than the delayed adversary (which in turn is no stronger than
i.i.d. noise).

To show our bound we demonstrated a new “babble-and-
push” attack. The adversary increases the uncertainty at the
decoder during the “babble” phase, enabling it to choose an al-
ternative codeword during the “push” phase. The “push” phase
succeeds because the adversary can effectively symmetrize
the channel. We demonstrate that the upper bound presented
herein holds against arbitrary codes, rather than simply against
deterministic codes, as is common in the coding theory litera-
ture. Since our analysis pertains to adversarial jamming rather
than random noise, the proof techniques presented may be of
independent interest in the more general setting of AVCs.

APPENDIX I
THE MINIMIZATION IN THEOREM 1

Let us denote p̄ by x, and write the bound as a function of
x as

f(x) = (1− 4p+ 4x)

(
1−H

(
x

1− 4p+ 4x

))
.

So

f ′(x) = 4− d

dx

{
(1− 4p+ 4x)

[
− x

1− 4p+ 4x
log

x

1− 4p+ 4x

− 1− 4p+ 3x

1− 4p+ 4x
log

1− 4p+ 3x

1− 4p+ 4x

]}

= 4− d

dx

{
− x log

x

1− 4p+ 4x

− (1− 4p+ 3x) log
1− 4p+ 3x

1− 4p+ 4x

}

= 4−
{

− log
x

1− 4p+ 4x
− (1− 4p+ 4x)− 4x

1− 4p+ 4x

− 3 log
1− 4p+ 3x

1− 4p+ 4x

− 3(1− 4p+ 4x)− 4(1− 4p+ 3x)

1− 4p+ 4x

}

= 4 +

{
log

x

1− 4p+ 4x
+ 3 log

1− 4p+ 3x

1− 4p+ 4x

}

= 4 + log
x(1− 4p+ 3x)3

(1− 4p+ 4x)4
.



First, we check for any roots of f ′(x) in 0 ≤ x ≤ p.

f ′(x) = 0

⇔ x(1− 4p+ 3x)3

(1− 4p+ 4x)4
=

1

16

⇔ ((1− 4p+ 3x) + x)4 = 16x(1− 4p+ 3x)3

⇔ (1− 4p+ 3x)4 − 12x(1− 4p+ 3x)3

+ 6x2(1− 4p+ 3x)2 + 4x3(1− 4p+ 3x) + x4 = 0.

We now substitute, for brevity, a = (1− 4p+ 3x)/x.

a4 − 12a3 + 6a2 + 4a+ 1 = 0

⇔ (a− 1)(a3 − 11a2 − 5a− 1) = 0

We now consider two cases. If p = 0.25, we have that
f(x) = 0 for x = 0. Thus setting x = 0 will yield the
minimum value for p = 1/4.

For p < 0.25, we study the minimum value given x > 0.
When x > 0 and p < 0.25 it holds that 1−4p > 0 and a > 3.
Thus, for f ′(x) to be zero we require that a3 − 11a2 − 5a−
1 = 0, which can be found via the general formula for cubic
equations (for instance [28, Chap. 6]) to have one real solution
and two complex conjugate solutions. The only real solution
is

a0 =
1

3

(
11 +

3

√
1592 + 24

√
33 +

3

√
1592− 24

√
33

)
� 11.4445,

giving x = (1 − 4p)/(a0 − 3) � (1 − 4p)/8.4445. However,
this value is greater than p for p < 1/(a0 + 1) � 1/12.4445.
For p ∈ [1/(a0 + 1), 0.25], this solution is in the range [0, p].

Now we will see that f ′(x) is negative for 0 < x < (1 −
4p)/(a0 − 3).

For p < 0.25, and 0 < x < (1− 4p)/(a0 − 3), we have

a =
1− 4p+ 3x

x
> a0 � 11.4445,

so

a3 − 11a2 − 5a− 1 � (a− a0)(a
2 + 0.4445a+ 0.087) > 0,

but since (a − 1)(a3 − 11a2 − 5a − 1) > 0 we have
f ′(x) < 0. By the continuity of the objective function,
f(0) = limx→0 f(x). So, f(x) is decreasing in 0 ≤ x <
(1− 4p)/a0 − 3, and thus the optimum p̄ is given by

p̄ = min

{
p,

1− 4p

a0 − 3

}

= min

⎧⎨
⎩p,

3(1− 4p)(
2 +

3
√

1592 + 24
√
33 +

3
√

1592− 24
√
33
)
⎫⎬
⎭

� min

{
p,

1− 4p

8.4445

}
.
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