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Abstract

We present computationally efficient and provably correct algorithms with near-optimal sample-complexity for

noisy non-adaptive group testing. Group testing involves grouping arbitrary subsets of items into pools. Each pool is

then tested to identify the defective items, which are usually assumed to be sparse. We consider random non-adaptive

pooling where pools are selected randomly and independently of the test outcomes. Our noisy scenario accounts

for both false negatives and false positives for the test outcomes. Inspired by compressive sensing algorithms we

introduce three computationally efficient algorithms for group testing, namely, Combinatorial Orthogonal Matching

Pursuit (COMP), Combinatorial Basis Pursuit (CBP), and CBP via Linear Programming (CBP-LP) decoding. The

first and third of these algorithms have several flavours, dealing separately with the noiseless and noisy measurement

scenarios. We derive explicit sample-complexity bounds—with all constants made explicit—for these algorithms as

a function of the desired error probability; the noise parameters; the number of items; and the size of the defective

set (or an upper bound on it). We also derive lower bounds for sample complexity based on Fano’s inequality and

show that our upper and lower bounds are equal up to a constant factor.

I. INTRODUCTION

The goal of group testing is to identify a small unknown subset D of defective items embedded in a much larger

set N (usually in the setting where d = |D| is much smaller than n = |N |, i.e., d is o(n)). This problem was first

considered by Dorfman [1] in scenarios where multiple items in a group can be simultaneously tested, with a binary

output depending on whether or not a “defective” item is present in the group being tested. In general, the goal

of group testing algorithms is to identify the defective set with as few measurements as possible. As demonstrated

in [1] and later work (see [2]), with judicious grouping and testing, far fewer than the trivial upper bound of n

tests may be required to identify the set of defective items.

We consider non-adaptive group testing in this paper. In non-adaptive group testing, the set of items being tested

in each test is required to be independent of the outcome of every other test [2]. This restriction is often useful in

practice, since this enables parallelization of the testing process. It also allows for an automated testing process. In

contrast, the procedures and hardware required for adaptive group testing may be significantly more complex.

In this paper we describe computationally efficient algorithms with near-optimal performance for noiseless and

noisy non-adaptive group testing problems. We describe the different aspects of the paper in some detail next.
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“Noisy” measurements: In addition to the noiseless group-testing problem, we consider the “noisy” variant of the

problem. In this noisy variant the result of each test may differ from the true result (in an independent and identically

distributed manner) with a certain pre-specified probability q. This leads to both false positives and negatives in the

test outcomes. Much of the existing work either considers one-sided noise, namely false positives [3] but no false

negatives or a “worst-case” noise [4] wherein the number of false positives and negatives are assumed bounded.1

Since the measurements are noisy, the problem of estimating the set of defective items is more challenging, and is

known to require more tests.2

Computationally efficient and near-optimal algorithms: Most algorithms in the literature focus on optimizing

the number of measurements required – in some cases, this leads to algorithms that may not be computationally

efficient to implement (for e.g. [3]). In this paper we present algorithms that are not only computationally efficient

but are also near-optimal in the number of measurements required.

We derive lower bounds on group-testing algorithms based on information theoretic analysis. For the upper bounds

we analyze three different types of algorithms. These algorithms are related to those described in the compressive

sensing literature (see Section I-A).

The first two algorithms are based on Basis Pursuit and Orthogonal Matching Pursuit and we call our algorithms

Combinatorial Basis Pursuit (CBP), and Combinatorial Orthogonal Matching Pursuit (COMP). Both CBP and COMP

are not new and have also been previously considered in the group-testing literature (under different names) for

both noiseless and noisy scenarios (see, for instance [7]). Our contribution here is a tighter analysis in comparison

to the previous literature for COMP. We present a novel analysis based on the coupon-collector problem for CBP.

Our sample-complexity bounds here are explicit and all of the constants involved are made precise.

Our third algorithm is related to linear programming relaxations used in the compressive sensing literature.

In compressive sensing the `0 norm minimization is relaxed to an `1 norm minimization. In the noise-free case

this relaxation results in a linear program since the measurements are linear. In contrast, in group testing, the

measurements are non-linear and boolean. In the noise-free case the measurements take the value one if some

defective item is in the pool and zero if no defective item is part of the pool. Furthermore, noise in the group testing

scenario is also boolean unlike additive noises in compressive sensing. For these reasons we also need to relax our

boolean measurement equations. We do so by using a novel combination of inequality and positivity constraints.

Our LP formulation and analysis is related to error-correction [8], where, one uses a “minimum distance” decoding

criteria based on perturbation analysis. The idea is to decode to a vector pair consisting defective items, x, and the

1For instance [4] considers group-testing algorithms that are resilient to all noise patterns wherein at most a fraction q of the results differ

from their true values, rather than the probabilistic guarantee we give against most fraction-q errors. This is analogous to the difference between

combinatorial coding-theoretic error-correcting codes (for instance Gilbert-Varshamov codes [5]) and probabilistic information-theoretic codes

(for instance [6]). In this work we concern ourselves only with the latter, though it is possible that our techniques can also be used to analyzed

the former.
2We wish to highlight the difference between noise and errors. We use the former term to refer to noise in the outcomes of the

group-test, regardless of the group-testing algorithm used. The latter term is used to refer to the error due to the estimation process

of the group-testing algorithm.
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error vector, η such that the error-vector η is as “small” as possible. We call this algorithm the Noisy Combinatorial

Basis Pursuit via LP decoding (NCBP-LP). Using standard concentration results we show that the solution to our LP

decoding algorithm recovers the true defective items with high probability. Furthermore, we achieve near-optimal

performance in the sense that our sample complexity for NCBP-LP match the lower bounds within a constant

factor, where the constant is independent of the number of items n and the defective set size d (but may depend on

the noise parameter q, and the error probability ε). Based on this analysis, we can directly derive the performance

of two other LP-based decoding algorithms. In particular CBP-LP considers the noiseless measurement scenario,

and NCBP-SLP considers the noisy measurement scenario, but only uses constraints corresponding to positive test

outcomes (whether true or false positives). It is perhaps interesting that even though NCBP-SLP only considers a

subset of the available information, it nonetheless has performance comparable to NCBP-LP.3

“Small-error” probability ε: Existing work has considered both deterministic and random pooling designs [2]. In

this context both deterministic and probabilistic sample complexity bounds for the number of measurements T that

lead to exact identification of the defective items have been derived. There is also existing work on characterizing

sample-complexity bounds for the average case scenario (see [3]). These sample complexity bounds are usually

asymptotic in nature and describe the scaling of the number of items n with respect to the number of defectives

d to ensure that the error probability approaches zero. To gain new insights into the constants involved in the

sample-complexity bounds we admit a small but fixed error probability, ε. With this new perspective we can derive

upper and lower bounds that hold not only in an order-wise sense but also where the constants involved in these

order-wise bounds can be made explicit.

Explicit Sample Complexity Bounds: Our sample complexity bounds are of the form T ≥ β(D, ε)d log(n). The

function β(q, ε) is an explicitly computed function of the noise parameter q and admissible error probability ε. In

the literature, order-optimal upper and lower bounds on the number of tests required are known for the problems

we consider (for instance [3], [9]). In both the noiseless and noisy variants, the number of measurements required

to identify the set of defective items is known to be T = Θ(d log(n)) – here n = |N | is the total number of

items and d = |D| is the size of the defective subset. In fact, if only D, an upper bound on d, is known, then

T = Θ(D log(n)) measurements are also known to be necessary and sufficient. In our algorithms we explicitly

demonstrate that we require only a knowledge of D rather than the exact value of d. Furthermore, in the noisy

variant, we show that the number of tests required is in general a constant factor larger than in the noiseless case

(where this constant β is independent of both n and d, but may depend on the noise parameter q and the allowable

error-probability ε of the algorithm).

This paper is organized as follows. In Section II, we introduce the model and corresponding notation, and describe

the algorithms analyzed in this work. In Section III, we describe the main results of this work. Sections IV and

V contain the analysis respectively of our information-theoretic lower bounds, and of the group-testing algorithms

3In fact, our analysis actually indicates superior performance for NCBP-SLP compared to NCBP-LP, but this is an artifact of the fact that

we did not truly optimize over all internal parameters in our proofs.
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considered.

A. Compressive Sensing

Compressive sensing has received significant attention over the last decade. We describe the version most related

to the topic of this paper [10], [11]. This version considers the following problem. Let x be an exactly d-sparse

vector in Rn, i.e., a vector with at most d non-zero components (in general in the situations of interest d = o(n)).4

Let z corresponds to a noise vector added to the measurement Mx. One is given a set of “compressed noisy

measurements” of x as

y = Mx + z (1)

||z||2 ≤ c2 (2)

||x||0 ≤ d (3)

Here the constraint (2) corresponds to a guarantee that the noise is not “too large”, and the (non-linear) constraint

(3) corresponds to the prior knowledge that x is d-sparse. The T × n matrix M is designed by choosing each

entry i.i.d. from a suitable probability distribution (for instance, the set of zero-mean, 1/n variance Gaussian

random variables). The decoder must use the resulting noisy measurement vector y ∈ RT and the matrix M to

computationally efficiently estimate the underlying vector x. The challenge is to do so with as few measurements

as possible, i.e., with the number of rows T of M being as small as possible.

1) Orthogonal Matching Pursuit: We note that it is enough for the decoder to computationally efficiently estimate

the support D of x, the set of indices on which x is non-zero, correctly. This is because the decoder can then

estimate x as (M t
DMD)−1M t

Dy, which is the minimum mean-square error estimate of x. (Here MD equals the

T × d sub-matrix of M whose columns numbers correspond to the indices in D, and T is a design parameter

chosen to optimize performance.)

One popular method of efficient estimation of D is that of Orthogonal matching pursuit (OMP) [12]. The intuition

is that if the columns of the matrix M are “almost orthogonal” (every pair of columns have “relatively small” dot-

product) then decoding can proceed in a greedy manner. In particular, the OMP algorithm computes the dot-product

between y and each column mi of M , and declares D to be the set of d indices for which this dot-product has

largest absolute value.

One can show [12] that there exists a universal constant c3 such that if z = 0 then with probability at least

1 − d−c3 (over the choice of M , which is assumed to be independent of the vector x) this procedure correctly

4As opposed to an approximately d-sparse vector, i.e., a vector such that “most” of its energy is confined to d indices of x. One way of

characterizing such vectors is to say that ||x − xd||1 ≤ c1||x||1 for some suitably small 0 < c1 < 1. Here xd is defined as the vector

matching x on the d components that are largest in absolute value, and zero elsewhere. The results of [10], [11] also apply in this more general

setting. However, in this work we are primarily concerned with the problem of group testing rather than that of compressive sensing, and present

the work of compressive sensing merely by way of analogy. Hence we focus on the simplest scenarios in which we can draw appropriate

correspondences between the two problems.
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reconstructs x with T ≤ c3d log(n) measurements. Similar results can also be shown with z 6= 0, though the form

of the result is more intricate.

2) Basis Pursuit: An alternate decoding procedure proceeds by relaxing the compressive sensing problem (in

particular the non-linear constraint (3)) into the convex optimization problem called Basis Pursuit (BP).

x = arg min ||x||1 (4)

subject to ||y −Mx||2 ≤ c2 (5)

It can be shown (for instance [10], [11]) that there exist constants c4, c5 and c6 such that with T = c4d log(n),

with probability at least 1− 2c5n, the solution x∗ to BP satisfies ||x∗ − x||2 ≤ c6||z||2.

II. BACKGROUND

A. Model and Notation
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Fig. 1. An example demonstrating a typical non-adaptive group-testing setup. The T ×n binary group-testing matrix represents the items being

tested in each test, the length-n binary input vector x is a weight d vector encoding the locations of the d defective items in D, the length-T

binary vector y denotes the outcomes of the group tests in the absence of noise, the length-T binary noisy result vector ŷ denotes the actually

observed noisy outcomes of the group tests, as the result of the noiseless result vector being perturbed by the length-T binary noise vector ν.

The length-n binary estimate vector x̂ represents the estimated locations of the defective items.

A set N contains n items, of which an unknown subset D are said to be “defective”.5 The goal of group-testing

is to correctly identify the set of defective items via a minimal number of “group tests”, as defined below (see

Figure 1 for a graphical representation).

5It is common (see for example [13]) to assume that the number d of defective items in D is known, or at least a good upper bound D on

d, is known a priori. If not, other work (for example [14]) considers non-adaptive algorithms with low query complexity that help estimate

d. However, in this work we explicitly consider algorithms that do not require such foreknowledge of d – rather, our algorithms have “good”

performance with O(D log(n)) measurements.
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Each row of a T×n binary group-testing matrix M corresponds to a distinct test, and each column corresponds to

a distinct item. Hence the items that comprise the group being tested in the ith test are exactly those corresponding

to columns containing a 1 in the ith location. The method of generating such a matrix M is part of the design of

the group test – this and the other part, that of estimating the set D, is described in Section II-B.

The length-n binary input vector x represents the set N , and contains 1s exactly in the locations corresponding

to the items of D. The locations with ones/defective items are said to be positive – the other locations are said to

be negative. We use these terms interchangeably.

The outcomes of the noiseless tests correspond to the length-T binary noiseless result vector y, with a 1 in the

i location if and only if the ith test contains at least one defective item.

The observed vector of test outcomes in the noisy scenario is denoted by the length-T binary noisy result vector

ŷ – the probability that each entry yi of y differs from the corresponding entry ŷi in ŷ is q, where q is the noise

parameter. The locations where the noiseless and the noisy result vectors differ is denoted by the length-T binary

noise vector ν, with 1s in the locations where they differ.

The estimate of the locations of the defective items is encoded in the length-n binary estimate vector x̂, with 1s

in the locations where the group-testing algorithms described in Section II-B estimate the defective items to be.

The probability of error of any group-testing algorithm is defined as the probability (over the input vector x,

group-testing matrix M , and noise vector ν) that the estimated vector differs from the input vector.

B. Algorithms

We now describe the COMP and CBP algorithms in both the noiseless and noisy settings. The algorithms are

specified by the choices of encoding matrices and decoding algorithms. Their performance is stated in Section III

and the corresponding proofs of the algorithms are presented in Section V.

1) “Column-based” Algorithms: We first consider algorithms that consider columns of the measurement matrix

M , and try to correlate these with the observations y. We consider two scenarios – the first when the observations are

noiseless, and the second when they are noisy. In both cases we draw the analogy with a corresponding compressive

sensing algorithm.

Combinatorial Orthogonal Matching Pursuit (COMP):

The T × n group-testing matrix M is defined as follows. A group selection parameter p is chosen (the exact

values of T and p are code-design parameters to be specified later). Then, i.i.d. for each (i, j), mi,j (the (i, j)th

element of M ) is set to be one with probability p, and zero otherwise.

The decoding algorithm works “column-wise” on M – it attempts to match the columns of M with the result

vector y. That is, if a particular column j of M has the property that all locations i where it has ones also

corresponds to ones in yi in the result vector, then the jth item (xj) is declared to be defective (positive). All other
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Fig. 2. An example demonstrating the COMP algorithm. The algorithm matches columns of M to the result vector. As in (b) in the figure,

since the result vector “contains” the 7th column, then the decoder declares that item to be defective. Conversely, as in (c), since there is no

such containment of the last column, then the decoder declares that item to be non-defective. However, sometimes, as in (a), an item that is

truly negative, is “hidden” by some other columns corresponding to defective items, leading to a false positive.

items are declared to be non-defective (negative). 6

Note that this decoding algorithm never has false negatives, only false positives. A false positive occurs when

all locations with ones in the jth column of M (corresponding to a non-defective item j) are “hidden” by the ones

of other columns corresponding to defectives items. That is, let column j and some other columns j1, . . . , jk of

matrix M be such that for each i such that mi,j = 1, there exists an index j′ in {j1, . . . , jk} for which mi,j′ also

equals 1. Then if each of the {j1, . . . , jk}th items are defective, then the jth item will also always be declared as

defective by the COMP decoder, regardless of whether or not it actually is. The probability of this event happening

becomes smaller as the number of tests T become larger.

The rough correspondence between this algorithm and Orthogonal Matching Pursuit ([12]) arises from the fact

that, as in Orthogonal Matching Pursuit, the decoder attempts to match the columns of the group-testing matrix

with the result vector.

6 Note the similarity between this algorithm and OMP. Another way of phrasing the above decoding rule is to say that the dot-product

between y and each column of M should equal the number of ones in that column. Hence the name Combinatorial OMP, with Combinatorial

stressing that the underlying problem (group-testing) is Combinatorial rather than Linear (Compressive sensing).
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Noisy Combinatorial Orthogonal Matching Pursuit (NCOMP)
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Fig. 3. An example demonstrating the NCOMP algorithm. The algorithm matches columns of M to the result vector up to a certain number

of mismatches governed by a threshold. In this example, the threshold is set so that the number mismatches be less than the number of matches.

For instance, in (b) above, the 1s in the third column of the matrix match the 1s in the result vector in two locations (the 5th and 7th rows),

but do not match only in one location in the 4th row (locations wherein there are 0s in the matrix columns but 1s in the result vector do not

count as mismatches). Hence the decoder declares that item to be defective, which is the correct decision.

However, consider the false negative generated for the item in (c). This corresponds to the 7th item. The noise in the 2nd, 3rd and 4th rows of

ν means that there is only one match (in the 7th row) and two mismatches (2nd and 4th rows) – hence the decoder declares that item to be

non-defective.

Also, sometimes, as in (a), an item that is truly negative, has a sufficient number of measurement errors that the number of mismatches is

reduced to be below the threshold, leading to a false positive.

In the noisy COMP case, we relax the sharp-threshold requirement in the original COMP algorithm that the

set of locations of ones in any column of M corresponding to a positive item be entirely contained in the set of

locations of ones in the result vector. Instead, we allow for a certain number of “mismatches” – this number of

mismatches depends on both the number of ones in each column, and also the noise parameter q.

Let p and τ be design parameters to be specified later. To generate the M for the NCOMP algorithm case, each

element of M is selected i.i.d. with probability p to be 1.

The decoder proceeds as follows, For each column j, we define the indicator set Tj as the set of indices i

in that column where mi,j = 1. We also define the matching set Sj as the set of indices j where both ŷi = 1

(corresponding to the noisy result vector) and mi,j = 1.
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Then the decoder uses the following “relaxed” thresholding rule. If |Si| ≥ |Ti|(1− q(1 + τ)), then the decoder

declares the ith item to be defective, else it declares it to be non-defective.7

2) “Row-based” algorithms:

We now consider algorithms that consider rows of the measurement matrix M , and try to correlate these with the

observations y. We again consider two scenarios – the first when the observations are noiseless, and the second

when they are noisy. In both cases we draw the analogy with a corresponding compressive sensing algorithm. This

class of algorithms work “row-wise” on M , rather than column-wise as in the OMP algorithms presented above.

We first present a combinatorial algorithm for the noiseless case, and then a suite of Linear Programs (LPs) for

both the noiseless and noisy cases.

Combinatorial Basis Pursuit (CBP):
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Fig. 4. An example demonstrating the CBP algorithm. Based on only on the outcome of the negative tests (those with output zero), the decoder

estimates the set of non-defective items, and “guesses” that the remaining items are defective.

The T × n group-testing matrix M is defined as follows. A group sampling parameter g is chosen (the exact

values of T and g are code-design parameters to be specified later). Then, the ith row of M is specified by sampling

with replacement8 from the set [1, . . . , n] exactly g times, and setting the (i, j) location to be one if j is sampled

at least once during this process, and zero otherwise.9

The decoding algorithm proceeds by using only the tests which have a negative (zero) outcome, to identify all

the non-defective items, and declaring all other items to be defective. If M is chosen to have enough rows (tests),

each non-defective item should, with significant probability, appear in at least one negative test, and hence will be

appropriately accounted for. Errors (false positives) occur when at least one non-defective item is not tested, or

only occurs in positive tests (i.e., every test it occurs in has at least one defective item). The analysis of this type

of algorithm comprises of estimating the trade-off between the number of tests and the probability of error.

7As in Footnote 6, this “relaxed” thresholding rule can be viewed as relaxing the requirement on the dot-product between ŷ and the columns

of M .
8Sampling without replacement is a more natural way to build tests, but the analysis is trickier. However, the performance of such a group-

testing scheme can be shown to be no worse than the one analyzed here [15]. Also see Footnote 9.
9Note that this process of sampling each item in each test with replacement results in a slightly different distribution than if the group-size

of each test was fixed a priori and hence the sampling was “without replacement” in each test. (For instance, in the process we define, each

test may, with some probability, test fewer than g items.) The primary advantage of analyzing the “with replacement” sampling is that in the

resulting group-testing matrix every entry is then chosen i.i.d..
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x̂ = feasible point in (6)∑
j:mij=1

xj = 0, if yi = 0, (7)

∑
j:mij=1

xj ≥ 1, if yi = 1, (8)

∑
∀i
xj ≤ D (9)

0 ≤ xj ≤ 1 (10)

Fig. 5. The constraint set of CBP-LP.

More formally, for all tests i whose measurement outcome yi is a zero, let mi denote the corresponding ith row

of M . The decoder outputs x̂ as the length-n binary vector which has 0s in exactly those locations where there is

a 1 in at least one such mi.

Combinatorial Basis Pursuit via LP decoding (CBP-LP):

In fact, a linear relaxation of CBP leads naturally to the following set of LPs, which attempts to find a feasible

point in the constraint set given by (6–10).

Working backwards through (7)-(10), constraint (10) relaxes the constraint that each xj ∈ {0, 1} in the usual

manner, constraint (9) indicates that there are at most D defective items, constraint (8) indicates that if the ith test

outcome is positive (yi = 1) then there must be at least one defective item in the set of items being tested in the

ith test (at least one xj being tested must be 1), and finally constraint (7) indicates that if the ith test outcome is

negative (yi = 1) then there cannot be any defective items being tested in test i. The decoder returns x̂ as any

feasible solution to this LP.

The next algorithm, NCBP-LP, includes CBP-LP as a special case with no noise. Hence we defer discussion of

CBP-LP to the discussion of NCBP-LP.

Noisy Combinatorial Basis Pursuit via LP decoding (NCBP-LP):

In the noisy measurement scenario, the constraints of type (7) and (8) may no longer hold. We hence have to

add “slack” variables ηi for all i ∈ {1, . . . , T}. For a particular test i this ηi is defined to be zero if a particular

test result is correct, and positive (and at least 1) if the test result is incorrect. Of course, the decoder does not

know a priori which scenario a particular test outcome falls under, and hence has to also decode η. Nonetheless,

as is common in the field of error-correction [8], often using a “minimum distance” decoding criteria (decoding to

a vector pair (x, η) such that the error-vector η is as “small” as possible) leads to good decoding performance. Our

LP decoder attempts to do so.

To be more precise, we solve the LP in (11–17).

Here the variables ηi are “slack variables” in the equations (12) and (13). For instance, if test i is truly negative,

then all the variables in an equation of the form (12) are zero. However, if the test is a false negative, then the
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(x̂, η̂) = arg min
x,η

∑
i:ŷi=1

ηi +
1

e

∑
i:ŷi=0

ηi (11)

such that

−ηi +
∑

j:mij=1

xj = 0, if ŷi = 0, (12)

ηi +
∑

j:mij=1

xj ≥ 1, if ŷi = 1, (13)

∑
∀j

xj ≤ D (14)

0 ≤ xj ≤ 1. (15)

0 ≤ ηi ≤ D, if ŷi = 0, (16)

0 ≤ ηi ≤ 1, if ŷi = 1, (17)

Fig. 6. The LP corresponding to NCBP-LP.

variable ηi is then set to equal the number of defective items in test i. Similarly, if a test i is truly positive, then

ηi is zero, and equations of the form (13) are satisfied. However, if the test is a false positive, then ηi is set to

equal 1 (and the variables tested in test j are set to zero). Note that ηi is bounded above by 1 in the case of (false)

positives, but is only bounded above by D in the case of (false) negatives. This is due to the asymmetry of positive

and negative test outcomes – multiple positive items tested simultaneously do not give a different outcome from a

single positive item tested. The reason that the objective function is split into two parts, with the slack variables

corresponding to negative outcomes being weighted less (by a factor of 1/e) than the slack variables corresponding

to positive outcomes is exactly to compensate for this asymmetry.10

In fact, it turns out that an even simpler LP still gives essentially the same performance as NCBP-LP.

Noisy Combinatorial Basis Pursuit via Simpler LP decoding (NCBP-SLP):

Consider the LP given in (18–22). The set of constraints for this LP is a subset of the set of constraints for

NCBP-LP (in fact, it only examines the set of tests with positive outcomes). Nonetheless, we can demonstrate that

this LP decoding algorithm has comparable performance as NCBP-LP. The intuition is that if NCBP-LP works

by finding a η vector with low Hamming weight, then NCBP-SLP does the same by finding a η vector with low

Hamming weight restricted just to the set of positive outcomes. Since the noise that converts y to ŷ is probabilistic,

10The reason for this particular choice of the weighting factor equaling 1/e comes out of the analysis of our algorithm. We are able to show

that for such a value, our algorithm has the claimed performance. However, we have not optimized this weighting factor so as to minimize

the number of tests T , since the corresponding calculations quickly become hard to solve exactly in closed form (though they are tractable to

computer calculation).
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(x̂, η̂) = arg min
x,η

∑
∀i:ŷi=1

ηi (18)

such that

ηi +
∑

j:mij=1

xj ≥ 1, if ŷi = 1, (19)

∑
∀j

xj ≤ D (20)

0 ≤ xj ≤ 1. (21)

0 ≤ ηi ≤ 1, if ŷi = 1, (22)

Fig. 7. The LP corresponding to CBP-SLP.

by standard concentration results these two approaches should, with high probability, lead to the same result. 11

III. MAIN RESULTS

A. Lower bounds on the number of tests required

We first provide information-theoretic lower bounds on the number of tests required by any group-testing

algorithm. While we believe these bounds to be “common knowledge” in the field, we have been unable to pinpoint

a reference that gives an explicit lower bound on the number of tests in terms of the acceptable probability of error

of the group-testing algorithm. For the sake of completeness, so we can benchmark our analysis of the algorithms

we present later, we state and prove the lower bounds here. All logarithms in this work are assumed to be binary,

except where explicitly identified as otherwise (in some cases we explicitly denote the natural logarithm as ln(.)).

Theorem 1: [Folklore] Any group-testing algorithm with noiseless measurements that has a probability of error

of at most ε requires at least (1− ε)D log(n/D) tests.

In fact, the corresponding lower bounds can be extended to the scenario with noisy measurements as well.

Theorem 2: [Folklore] Any group-testing algorithm that has measurements that are noisy i.i.d. with probability

q and that has a probability of error of at most ε requires at least [(1− ε)D log(n/D)]/(1−H(q)) tests.12

Note: Our assumption that D = o(n) implies that the bounds in Theorem 1 and 2 are Ω(D log(n)).

B. Upper Bounds on the number of tests required

The main contributions of this work are explicit computations of the number of tests required to give a desired

probability of error via computationally efficient algorithms. Some of these algorithms are new (LP-based decoding

11However, it is interesting to note that the complement of the above statement is not true. In particular, if one removes (13) and (17) from

NCBP-LP, to examine only the tests with negative outcomes, this approach fails with high probability. This is because the corresponding LP

preferentially returns x̂ as the all-zero vector, which indeed would trivially satisfy an LP that examines only negative outcomes. Perhaps this

indicates the importance of maintaining a positive attitude in life.
12Here H(.) denotes the binary entropy function.
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for CBP-LP and NCBP-LP in Theorems). Others have tighter analysis than previously in the literature (COMP and

NCOMP) novel analysis (coupon-collector based analysis for CBP, perturbation analysis for CBP-LP and NCBP-

LP). In each case, to the best of our knowledge ours is the first work to explicitly compute the tradeoff between the

number of tests required to give a desired probability of error, rather than giving order of magnitude estimates of

the number of tests required for a “reasonable” probability of success. Also, the novel analysis in the CBP, CBP-LP,

and NCBP-LP algorithms may well extend to other information theory problems such as compressive sensing.

Theorem 3: COMP with error probability at most n−δ requires no more than eD(1 + δ) ln(n) tests.

Translating COMP into the noisy observation scenario is non-trivial. A more careful analysis for the thresholded

scheme in NCOMP leads to the following result.

Theorem 4: NCOMP with error probability at most n−δ requires no more than 16(1+
√
γ)2(1+δ) ln 2

(1−e−2)(1−2q)2 D log n tests,

where γ is a constant that can be explicitly calculated, and lies in the interval [δ, 1).

Theorem 5: CBP with error probability at most n−δ requires no more than 2(1 + δ)eD lnn tests.

The analysis of the constants in the next three theorems are not optimized (doing so is analytically very

cumbersome), but are given to demonstrate the functional dependence on δ and q. We define Γ as ln(d)/ ln(n)

(note that in the limit of large n it lies in the interval [0, 1)).

For the same noiseless observation scenario as CBP, the LP-based decoding algorithm CBP-LP has the following

performance guarantees.

Theorem 6: CBP-LP with error probability at most n−δ requires no more than 8e (δ + 1 + Γ)D lnn tests.

In fact Theorem 6 is implied by the stronger analysis (for the noisy observations scenario) for NCBP-LP in

Theorem 7 below.

Theorem 7: NCBP-LP with error probability at most n−δ requires no more than βLPD lnn tests, with βLP

defined as

max

{
4e (δ + 1 + Γ)

(1− 2q)2
, 8e (δ + 1 + Γ),

4(1− q + 2qe)e (δ + 1 + Γ)

(1− q)2
,

8e (δ + 1 + Γ)

(1− q + 2qe)
,

(1− q + qe) (δ + Γ) (1 + e)2

e(1− 2q)2
,

8e (δ + Γ)

(1− q + qe)

}
.

Essentially the same analysis as in Theorem 7 in fact then also implies Theorem 8 below, leading to a simpler

LP than NCBP-LP, with essentially the same performance.

Theorem 8: NCBP-LP with error probability at most n−δ requires no more than βSLPD lnn tests, with βSLP

defined as

max

{
4e (δ + 1 + Γ)

(1− 2q)2
, 8e (δ + 1 + Γ),

(1− q + qe) (δ + Γ) (1 + e)2

e(1− 2q)2

}
.

Note: Our achievability schemes in Theorems 3-7 are commensurate (equal up to a constant factor) with the

lower bounds in Theorems 1 and 2. For instance, the bound on the number of tests in Theorem 4 differs from the

corresponding lower bound in Theorem 2 by a factor that is at most 12.83(1 +
√
γ)2(1 + δ)(1− 2q)−2, which is

a function only of q and δ. For “small” q and δ this quantity is “small”.
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IV. PROOF OF THE LOWER BOUNDS IN THEOREMS 1 AND 2

The “usual” proofs of lower bounds for group-testing are combinatorial. To incorporate the allowed probability

of error ε into our lower bounds, we provide information-theoretic proofs.

We begin by noting that X → Y → Ŷ → X̂ (i.e. the input vector, noiseless result vector, noisy result vector,

and the estimate vector) forms a Markov chain. By standard information-theoretic definitions we have

H (X) = H (X|X̂) + I (X; X̂)

Since X is uniformly distributed over all length-n and D-sparse data vectors (since d could be as large as D),

H (X) = log |X | = log
(
n
D

)
. By Fano’s inequality, H (X|X̂) ≤ 1 + ε log

(
n
D

)
. Also, we have I (X; X̂) ≤ I (Y; Ŷ)

by the data-processing inequality. Finally, note that

I(Ŷ; Ŷ) ≤
T∑
i=1

[
H(Ŷi)−H(Ŷi|Yi)

]
since the first term is maximized when each of the Ŷi are independent, and because the measurement noise is

memoryless. For the BSC(q) noise we consider in this work, this summation is at most T (1−H(q)) by standard

arguments.13

Combining the above inequalities, we obtain

(1− ε) log

(
n

D

)
≤ 1 + T (1−H (q))

Also, by standard arguments via Stirling’s approximation [16], log
(
n
D

)
is at least D log(n/D). Substituting this

gives us the desired result

T ≥ 1− ε
1−H (q)

log

(
n

D

)
≥ 1− ε

1−H (q)
D log

( n
D

)
.

�

V. PROOF OF THE PERFORMANCE OF ALGORITHMS IN THEOREMS 3-7

A. Column-based algorithms

We first consider column-based algorithms. The COMP and NCOMP algorithms respectively deal with the

noiseless and noisy observation scenarios.

Proof of Theorem 3:

As noted in the discussion on COMP in Section II-B, the error-events for the algorithm correspond to false positives,

when a column of M corresponding to a non-defective item is “hidden” by other columns corresponding to defective

items. To calculate this probability, recall that each entry of M equals one with probability p, i.i.d. Let j index

13This technique also holds for more general types of discrete memoryless noise – for ease of presentation, in this work we focus on the

simple case of the Binary Symmetric Channel.
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a column of M corresponding to a non-defective item, and let j1, . . . , jd index the columns of M corresponding

to defective items. Then the probability that mi,j equals one, and at least one of mi,j1 , . . . ,mi,jd also equals one

is p(1− (1− p)d). Hence the probability that the jth column is hidden by a column corresponding to a defective

item is
(
1− p(1− p)d

)T
. Taking the union bound over all n− d non-defective items gives us that the probability

of false positives is bounded from above by

Pe = P+
e ≤ (n− d)

(
1− p(1− p)d

)T
. (23)

By differentiation, optimizing (23) with respect to p suggests choosing p as 1/d. However, the precise value of d

may not be known, only D, an upper bound on it, might be. Substituting the value p = 1/D back into (23), and

setting T as βD lnn gives us

Pe ≤ (n− d)

(
1− 1

D

(
1− 1

D

)d)βD lnn

≤ (n− d)

(
1− 1

De

)βD lnn

(24)

≤ (n− d)e−βe
−1 lnn

≤ n1−βe−1

. (25)

Inequality (24) follows from the previous since d ≤ D by definition, and since (1 − 1/x)x ≥ e−1. Choosing

β = (1+δ)e thus ensures the required decay in the probability of error. Hence choosing T to be at least (1+δ)eD lnn

suffices to prove the theorem. �.

Proof of Theorem 4:

Due to the presence of noise, both false positives and false negatives may occur in the noisy COMP algorithm –

the overall probability of error is the sum of the probability of false positives and that of false negatives. As in

the previous algorithm, we set p = 1/D and T = βD log n. We first calculate the probability of false negatives by

computing the probability that more than the expected number of ones get flipped to zero in the result vector in
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locations corresponding to ones in the column indexing the defective item. This can be computed as

P−e =

d⋃
i=1

P (|Ti| = t) Pr (|Si| < |Ti|(1− q(1 + τ)))

≤ d

T∑
t=0

(
T

t

)
pt(1− p)T−t (26)

t∑
r=t−t(1−q(1+τ))

(
t

r

)
qr(1− q)t−r

≤ d

T∑
t=0

(
T

t

)
pt(1− p)T−te−2t(qτ)2 (27)

= d
(

1− p+ pe−2(qτ)2
)T

(28)

= d

(
1− 1

D
+

1

D
e−2(qτ)2

)βD logn

(29)

≤ d exp
[
−β log n

(
1− e−2(qτ)2

)]
(30)

≤ d exp
[
−β log n(1− e−2)(qτ)2

]
(31)

Here, as in Section II-B, Ti denotes the locations of ones in the ith column of M . Inequality (26) follows from

the union bound over the possible errors for each of the defective items, with the first summation accounting for

the different possible sizes of Ti, and the second summation accounting for the error events corresponding to the

number of one-to-zero flips exceeding the threshold chosen by the algorithm. Inequality (27) follows from the

Chernoff bound. Equality (28) comes from the binomial theorem. Equality (29) comes from substituting in the

values of p and T . Inequality (30) follows from the leading terms of the Taylor series of the exponential function.

Inequality (31) follows from bounding the concave function 1− e−2x by the linear function (1− e−2)x for x > 0.

The requirement that the probability of false negatives P−e to be at most n−δ implies that β− (the bound on β

due to this restriction) satisfies

ln
(
d exp

[
−β(1− e−2)(qτ)2 log n

])
< −δ lnn

⇒ ln d− β(1−e−2)(qτ)2

ln 2 lnn < −δ lnn

⇒ β− >
( ln d

lnn+δ) ln 2

(1−e−2)(qτ)2 (32)

We now focus on the probability of false positives. In the noiseless COMP algorithm, the only way a false positive

could occur was if all the ones in a column are hidden by ones in columns corresponding to defective items. In the

noisy COMP algorithm this still happens, but in addition noise could also lead to a similar masking effect. That is,

even in the 1 locations of a non-defective column not hidden by other defective columns, measurement noise may

flip enough zeroes to ones so that the decoding threshold is exceeded, and the decoder hence incorrectly declares

that particular item to be defective. See Figure 3(a) for an example.

Hence we define a new quantity a, which denotes the probability for any (i, j)th location in M that a 1 in that
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location is “hidden by other columns or by noise”. It equals

a = 1− [(1− q)(1− p)d + q(1− (1− p)d)]

=

(
1− q −

(
1− 1

D

)d
(1− 2q)

)
(33)

We set D ≥ 2 (the case D = 1 can be handled separately by the same analysis, but setting p = 1/(D + 1) = 1/2

rather than 1/D = 1), and note that by definition d ≤ D. We then bound a from above as

max
D≥2,d≤D

a = max
D≥2,d≤D

(
1− q −

(
1− 1

D

)d
(1− 2q)

)

= 1− q − (1− 2q) min
D≥2,d≤D

((
1− 1

D

)d)
(34)

= 1− q − (1− 2q) min
D≥2

((
1− 1

D

)D)
(35)

= (1− q)− (1− 2q)/4. (36)

Equation (36) follows from the observations that (34) is optimized when d = D and (35) is optimized when D = 2.

The probability of false positives is then computed in a similar manner to that of false negatives as in (26)–(31).

P+
e =

n−d⋃
i=1

P (|Ti| = t)P (|Si| ≥ |Ti|(1− q(1 + τ)))

≤ (n− d)

T∑
t=0

(
T

t

)
pt(1− p)T−t

t∑
r=t(1−q(1+τ))

(
t

r

)
ar(1− a)t−r

≤ (n− d)
(

1− p+ pe−2((1−q(1+τ))−a)2
)T

(37)

≤ (n− d)
(

1− p+ pe−2((1−2q)/4−qτ)2
)T

(38)

≤ (n− d) exp
[
−(1− e−2((1−2q)/4−qτ)2)β log n

]
(39)

≤ (n− d) exp
[
−β log n(1− e−2) ((1− 2q)/4− qτ)

2
)
]

(40)

Note that for the Chernoff bound to be applicable in (37), 1− q(1 + τ) > a, which implies that τ < (1− 2q)/(4q).

Equation (38) follows from substituting the bound derived on a in (36) into (37), and (39) follows by substituting

p = 1/D into the previous equation. Inequality (40) follows from bounding the concave function 1− e−2x by the

linear function (1− e−2)x for x > 0.

The requirement that the probability of false positives P+
e be at most n−δ implies that β+ (the bound on β due

to this restriction) be at least

β+ >

(
ln(n−d)

lnn + δ
)

ln 2

(1− e−2)((1− 2q)/4− qτ)2
. (41)

Note that β must be at least as large as max{β−, β+} so that both (32) and (41) are satisfied.
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When the threshold in the NCOMP algorithm is high (i.e., τ is small) then the probability of false negatives

increases; conversely, the threshold being low (τ being large) increases the probability of false positives. Alge-

braically, this expresses as the condition that τ > 0 (else the probability of false negatives is significant), and

conversely to the condition that 1− q(1+ τ) > a (so that the Chernoff bound can be used in (37)) – combined with

(36) this implies that τ ≤ (1−2q)/4q. Each of (32) and (41) as a function of τ is a reciprocal of a parabola, with a

pole at the corresponding extremal value of τ . Furthermore, β− is strictly increasing and β+ is strictly decreasing

in the region of valid τ in (0, (1− 2q)/(4q)). Hence the corresponding curves on the right-hand sides of (32) and

(41) intersect within the region of valid τ , and a good choice for β is at the τ where these two curves intersect.

To find this β, we make another simplifying substitution. Let γ be defined as

γ = lim
n,d→∞

ln d+ δ lnn

ln(n− d) + δ lnn
. (42)

and Γ as

Γ = lim
n,d→∞

ln d

lnn
.

Hence

γ =
Γ + δ

1 + δ
. (43)

(Note that since d = o(n), Γ lies in the interval [0, 1), and hence for large n, γ approaches a constant in the interval

[δ, 1).) Then equating the RHS of (32) and (41) implies that the optimal τ∗ satisfies

ln 2

(1− e−2)((1− 2q)/4− qτ∗)2
=

γ ln 2

(1− e−2)(qτ∗)2
(44)

Simplifying (44) gives us that

τ∗ =
1− 2q

4q(1 + γ−1/2)
. (45)

Substituting these values of γ and τ into (32) gives us the explicit bound for large n

β∗ =
16(1 + γ−0.5)2(Γ + δ) ln 2

(1− e−2)(1− 2q)2
. (46)

Using (43) to simplify (46) gives

β∗ =
16(1 +

√
γ)2(1 + δ) ln 2

(1− e−2)(1− 2q)2
≈

12.83(1 +
√
γ)2(1 + δ)

(1− 2q)2
.

�

B. Row-based algorithms

We now consider row-based algorithms. We first consider CBP whose analysis is based on a novel use of the

Coupon Collector Problem [17]. We then consider CBP-LP and NCBP-LP (respectively for noiseless and noisy

observation scenarios), whose analyses correspond to a novel “perturbation method” that has potential applications

in other estimation problems (such as compressive sensing).

Proof of Theorem 5:
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The Coupon Collector’s Problem (CCP) is a classical problem that considers the following scenario. Suppose

there are n types of coupons, each of which is equiprobable. A collector selects coupons (with replacement) until he

has a coupon of each type. What is the distribution on his stopping time? It is well-known ([17]) that the expected

stopping time is n lnn+Θ(n). Also, reasonable bounds on the tail of the distribution are also known – for instance,

it is known that the probability that the stopping time is more than χn lnn is at most n−χ+1.

Analogously to the above, we view the group-testing procedure of CBP as a Coupon Collector Problem. Consider

the following thought experiment. Suppose we consider any test as a length-g test-vector14 whose entries index the

items being tested in that test (repeated entries are allowed in this vector, hence there might be less than g distinct

items in this vector). Due to the design of our group-testing procedure in CBP, the probability that any item occurs

in any location of such a vector is uniform and independent. In fact this property (uniformity and independence of

the value of each entry of each test) also holds across tests. Hence, the items in any subsequence of k tests may be

viewed as the outcome of a process of selecting a single chain of gk coupons. This is still true even if we restrict

ourselves solely to the tests that have a negative outcome. The goal of CBP may now be viewed as the task of

collecting all the non-defective items. This can be summarized in the following equation

Tg

(
n− d
n

)g
≥ (n− d) ln(n− d). (47)

The left-hand side of Equation (47) refers to the expected number of (possibly repeated) items in negative tests

(since there are a total of T tests, each containing g (possibly repeated) items, and the probability of a test being

negative equals ((n− d)/n)g). The right-hand side of (47) refers to the expected stopping-time of the underlying

CCP. We thus optimize (47) w.r.t. g to obtain an optimal value of g equaling 1/ ln(n/(n− d)). However, since the

exact value of d is not known, but rather only D, an upper bound on it, we set g to equal 1/ ln(n/(n−D)). Taking

the appropriate limit of n going to infinity, and noting D = o(n), enables us to determine that, in expectation over

the testing process and the location of the defective items, (47) implies that T ≥ eD lnn.

However, (47) only holds in expectation. For us to design a testing procedure for which we can demonstrate that

the number of tests decays to zero as n−δ , we need to modify (47) to obtain the corresponding tail bound on T .

This takes a bit more work.

The right-hand side is then modified to χ(n−d) ln(n−d). This corresponds to the event that all types of coupons

have not been collected if χ(n− d) ln(n− d) total coupons have been collected. The probability of this event is at

most (n− d)−χ+1).

The left-hand side is multiplied with (1 − ρ), where ρ is a design parameter to be specified by Chernoff’s

bound on the probability that the actual number of items in the negative tests is smaller than (1 − ρ) times the

expected number. By Chernoff’s bound this is at most exp
(
−ρ2T

(
n−d
n

)g)
. Taking the union bound over these

14Note that this test-vector is different from the binary length-n vectors that specify tests in the group testing-matrix, though there is indeed

a natural bijection between them.
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two low-probability events gives us that the probability that

(1− ρ)Tg

(
n− d
n

)g
≥ χ(n− d) ln(n− d) (48)

does not hold is at most

exp

(
−ρ2T

(
n− d
n

)g)
+ (n− d)−χ+1. (49)

So, we again optimize for g in (47) and substitute g∗ = 1/ ln
(

n
n−D

)
into (48). We note that since both D and

d are o(n),
(
n−d
n

)g∗
converges to e−1. Hence we have, for large n,

T ≥ χ

1− ρ
(n− d) ln(n− d)

g∗
(
n−d
n

)g∗
≈ χ

1− ρ
(n− d) ln(n− d)

1

ln( n
n−D )

e−1

=
χ

1− ρ

(n− d) ln(n− d) ln
(

n
n−D

)
e−1

. (50)

Using the inequality ln(1 + x) ≥ x− x2/2 with x as D/(n−D) simplifies the RHS of (50) to

T ≥ χ

1− ρ
e

(
D − D2

2(n− d)

)
ln(n− d). (51)

Choosing T to be greater than the bound in (51) can only reduce the probability of error, hence choosing

T ≥ χ

1− ρ
eD ln(n− d)

still implies a probability of error at most as large as in (49).

Choosing ρ = 1
2 , noting that D ≥ d, and substituting (52) into (49) implies, for large enough d, the probability

of error Pe satisfies

Pe ≤ e−
δ2χ
1−δ d ln(n−d) + (n− d)−χ+1

= (n− d)−
δ2

1−δχd + (n− d)−χ+1

≤ 2(n− d)−χ+1.

Taking 2(n− d)−χ+1 = n−δ , we have χ = δ logn
log(n−d) + 1

log(n−d) + 1. For large n, χ approaches δ + 1.

Therefore, the probability of error is at most n−δ , with sufficiently large n, the following number of tests suffice

to satisfy the probability of error condition stated in the theorem.

T ≥ 2(1 + δ)eD lnn.

�

We first prove Theorem 7, and then derive Theorems 6 and 8 as direct corollaries.

Proof of Theorem 7:

At a high level, our proof proceeds as follows. First, we define two finite sets Φ′ and Φ′′ containing so-called

“perturbation vectors” (these vectors, defined below, depend only on x). We demonstrate in Claim 9 that any x̄ in
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the feasible set of the constraint set of NCBP-LP can be written as the true x plus a non-negative linear combination

of perturbation vectors from one or both of these sets. The linear combination property is important, since this

enables us to characterize the directions in which a vector can be perturbed from x to another vector that satisfies

the constraints of NCBP-LP, in a “finite” manner (instead of having to consider the uncountably infinite number

of directions that x could be perturbed to). The non-negativity of the linear combination is also crucial since, as

we explain below, this property ensures that the objective function of the LP can only increase when perturbed in

a direction corresponding to any vector in Φ′ or Φ′′.

In Claims 10 and 11 (which form the heart of our argument) we then characterize the expected change (over

randomness in the matrix M and noise ν) in the value of each slack variable ηi when x is perturbed to some x̄ by

a vector in Φ′ or Φ′′. In particular, we demonstrate that for each such individual perturbation vector, the expected

change in the value of each slack variable ηi is strictly positive with high probability.

In Claim 13 with slightly careful use of standard concentration inequalities (specifically, we need to use both

the additive and multiplicative forms of the Chernoff bound, reprised in Claim 12) we show that the probability

distributions derived in Claim 11. We then take the union bound over all vectors in Φ′ and Φ′′ (in fact, there are

a total of d(n − d) + d such vectors in Φ′ and Φ′′ together) and show that with high probability the expected

change in the value of the objective function (which equals the weighted sum of the changes in the values of the

slack variables ηi) for each perturbation vector in Φ′ ∪Φ′′ is also strictly positive. Finally, we note that the set of

feasible (x̄, η) satisfying NCBP-LP forms a convex set. Hence for any x̄ 6= x in the feasible set of NCBP-LP, the

value of NCBP-LP’s objective function corresponding to x̄ must be strictly greater than the value of the objective

function corresponding to x, which implies that the LP decodes correctly as x̂ = x.

We proceed by proving a sequence of claims that when strung together formalize the above argument.

Without loss of generality, let x be the vector with 1s in the first d locations, and 0s in the last n−d locations.15

Choose Φ′ = {φ′}d(n−d)
k′=1 as the set of d(n − d) vectors with a single −1 in the support of x, a single 1 outside

the support of x, and zeroes everywhere else. For instance, the first φ′ in the set equals (−1, 0, . . . , 0, 1, 0, . . . , 0),

where the 1 is in the (d+ 1)th location. Analogously, choose Φ′′ = {φ′′}dk′′=1 as the set of d vectors with a single

−1 in the support of x, and zeroes everywhere else. For instance, the first φ′′ in the set equals (−1, 0, . . . , 0).

Then, Claim 9 below gives a “nice” characterization of the set of x̄ in the feasible set of NCBP-LP.

Claim 9: Any vector x̄ that satisfies the constraints (12–17) in NCBP-LP can be written as

x̄ = x +

d(n−d)∑
k′=1

ck′φ
′
k′ +

d∑
k′′=1

ck′′φ
′′
k′′ , with all ck′ , ck′′ ≥ 0. (52)

Proof of Claim 9: The intuition behind this claim is a type of “conservation law”, so to speak. A good analogy is

the following two-stage physical process.

15As can be verified, our analysis is agnostic to the actual choice of x, as long as it is a vector in {0, 1}n of weight any d ≤ D.
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Imagine that x corresponds to n bottles of water each with capacity one litre, with the first d bottles full, and

the remaining empty. Imagine x̄ as another state of these bottles with d̄ ≤ d litres of water.

In the first stage, we throw away d − d̄ litres of water (taking care not to undershoot – i.e., to ensure that we

always leave at least x̄j litres in the jth bottle, for each of the first d bottles). This stage corresponds to using

non-negative linear combinations of perturbation vectors from the set Φ′′ (non-negativity arises from the fact that

we took care not to undershoot).

Then in the second stage, for each bottle j among the first d bottles that still has more water remaining than in

the corresponding bottle in the final state x̄i, we use its water to increase the water level of bottles among the last

n− d bottles (taking care not to overshoot, i.e., not to put more than the desired water level x̄i in any such bottle).

The fact that this is doable follows from conservation of mass. This stage corresponds to using non-negative linear

combinations of perturbation vectors from the set Φ′ (non-negativity arises from the fact the we took care not to

overshoot).16 �

Next, Claim 11 below computes the expected change in the value of the slack variable ηi as x is perturbed by φ′

or φ′′. A small example in Table V-B (with n = 3, d = 2) demonstrates the calculations in the proof of Claim 11

explicitly.

For any fixed x ∈ {0, 1}n of weight d ≤ D, let x′ = x + φ′, and x′′ = x + φ′′. Over the randomness in mi and

the noise in the test outcome νi, we define the cost perturbation random variables

∆′0,i = (ηi(x
′)− ηi(x)), ∆′′0,i = (ηi(x

′′)− ηi(x)) conditioned on ŷi = 0,

∆′1,i = (ηi(x
′)− ηi(x)), ∆′′1,i = (ηi(x

′′)− ηi(x)) conditioned on ŷi = 1.
(53)

Claim 10: The cost perturbation random variables defined in (53) all take values only in {−1, 0, 1}.

Proof of Claim 10: We first analyze the case when if ŷi = 0. By (12), ηi(x) = mi.x. Hence ∆′′0,i = ηi(x
′′)−ηi(x) =

mi.(x
′′ − x) = mi.φ

′′. Similarly ∆′0,i = mi.φ
′. But φ′′ has exactly one non-zero component (equaling −1), and

φ′ has exactly one component equaling −1 and one equaling 1. By definition, mi, is a 0/1 vector. Hence both

∆′′0,i and ∆′0,i take values in {−1, 0, 1}.

Similarly, if ŷi = 1, by (13), the minimum value of ηi(x) occurs at (1−mi.x)+ (i.e., equals 1−mi.x if 1−mi.x

is positive, and 0 otherwise). Since mi, x, x′and x′′ are all 0/1 vectors. Hence ηi(x), ηi(x′) and ηi(x
′′) are all

0/1 vectors, and thus their pairwise differences (and in particular ∆′′1,i and ∆′1,i) take values in {−1, 0, 1}. �.

The next claim forms the heart of our proof. It does an exhaustive17 case analysis that computes the probabilities

that the cost perturbation random variables take values 1 or −1 (the case that they equal zero can be derived from

these calculations in a straightforward manner too, but since these values turn out not to matter for our analysis,

we omit these details).

16Formalizing this intuition to explicitly obtain the non-negative linear combination is tedious simply due to notation complexity rather than

any intrinsic hardness in the concept, so we leave it as an exercise for HAROLD (Hypothetical Alert Reader Of Limitless Dedication).
17And exhausting!
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Claim 11:

P (∆′′1,i = 1) = p(1− p)d−1(1− q), P (∆′′1,i = −1) = 0, (54)

P (∆′′0,i = 1) = 0, P (∆′′0,i = −1) = pq, (55)

P (∆′1,i = 1) = p(1− p)d(1− q), P (∆′1,i = −1) = p(1− p)dq, (56)

P (∆′0,i = 1) = p(1− p)
[
(1− q)(1− p)d−1 + q

]
, P (∆′0,i = −1) = p(1− p)q. (57)

Proof of Claim 11: The proof follows from a case-analysis similar to the one performed in the example in Table V-B.

The reader is strongly encouraged to read that example before looking at the following case analysis, which can

appear quite intricate.

Without loss of generality (due to the symmetry of the distribution on mi), we assume that x has 1s in the first

d locations and 0s elsewhere.

To ease the reader into the analysis, we begin by considering the easier cases first.

• Equation (55) analyzes ∆′′0,i, the expected change in ηi if x is perturbed by a vector from Φ′′, and ŷi = 0.

In this case, note that by (12), ηi(x) = mi.x and ηi(x
′′) = mi.x

′′. Hence ∆′′0,i = ηi(x
′′) − ηi(x) =

mi.(x
′′−x) = mi.φ

′′. But φ′′ has only a single negative component and no positive components, hence ∆′′0,i

is never positive. Conversely, ∆′′0,i equals −1 whenever the support of mi intersects the support of x at the

location where φ′′ = −1 (which happens with probability pq since the first term corresponds to the probability

of a 1 in that location in mi, and since yi equals 1 in this case but we assumed that ŷi = 0), giving the desired

result.

• Analogously, Equation (54) analyzes ∆′′1,i, the expected change in ηi if x is perturbed by a vector from Φ′′,

and ŷi = 1. In this case, note that by (13), the minimum value of ηi(x) occurs at (1 −mi.x)+, (i.e., equals

1 −mi.x if 1 −mi.x is positive, and 0 otherwise). Note that since mi, x, and x′′ are all binary vectors,

therefore this function must also have integral values, and in fact must equal either 0 or 1. But both x and

x′′ are 0/1-vectors, and the support of x′′ is a strict subset of the support of x with exactly one less positive

component, hence ηi(x
′′) ≥ ηi(x), which means that ∆′′1,i ≥ 0. The strict inequality holds if and only if

ηi(x
′′) = 1 and ηi(x) = 0, or equivalently if mi.x

′′ = 1 and mi.x = 0. The only scenarios when this happens

is when the support of mi intersects the support of x at exactly one location (hence yi equals 1), and φ′′ = −1

at exactly this location. Thus, only d indices of mi matter for this scenario, and of these indices, d− 1 must

equal 0 and one must be 1. These scenarios occurs with probability (1− q)(1− p)d−1p (the term q indicates

probability of the event that yi = 1 and ŷ = 1, and the remaining terms indicate the probability of mi being

as specified). Computing the expectation of ∆′′1 due to this scenario gives the desired result.

The analysis of Equations (56) and (57) is more intricate.

• Equation (56) analyzes ∆′1,i the expected change in ηi if x is perturbed by a vector from Φ′, and ŷi = 1. As

in (54), the minimum value of ηi(x) occurs at (1 −mi.x)+ and must equal either 0 or 1. We now consider
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the cases ∆′1,i = −1 and ∆′1,i = 1 separately.

Using similar arguments as before, the only scenarios when ∆′1,i = −1 occur when yi = 0, the support of

mi is entirely outside the support of x, and further that mi equals 1 in the location where φ′ = 1. Thus, only

d + 1 indices of mi matter for this scenario – of these indices, d must equal 0 and one must be 1. These

scenarios occur with probability q(1− p)dp.

Analogously, the only scenarios when ∆′1,i = 1 occur when yi = 1, the support of mi intersects the support

of x exactly at the location where φ′ = −1, and further that mi equals 0 in the location where φ′ = 1. Thus,

only d + 1 indices of mi matter for this scenario. Of these indices, the d must equal 0 and one must be 1.

These scenarios occurs with probability (1− q)(1− p)dp (the (1− q) term indicates probability of the event

that yi = 1 and ŷ = 1, and the remaining terms indicate the probability of mi being as specified).

• Equation (57) analyzes ∆′0,i = −1, the expected change in ηi if x is perturbed by a vector from Φ′, and

ŷi = 0. As in Equation (55), ηi(x) = mi.x, hence ∆′0 = ηi(x
′)− ηi(x) = mi.φ

′.

We first analyze the case when ∆′0,i = −1. This occurs only when yi = 1, mi = 1 where φ′ = −1, and

further that mi equals 0 in the location where φ′ = 1. Thus, only 2 indices of mi matter for this scenario.

These scenarios occurs with probability q(1− p)p.

Analogously, the only scenarios when ∆′0,i = 1 occur when yi = 1, mi equals 1 in the location where φ′ = 1

and mi equals 0 in the location where φ′ = −1. This can happen in two ways. It could be that if the support

of mi is entirely outside the support of x (hence yi = 0), and further that mi equals 1 in the location where

φ′ = 1 (this happens with probability (1 − q)(1 − p)dp). Or, it could be that mi equals 0 where φ′ = −1,

mi equals 1 in at least one of the other (d − 1) locations in the support of x (which ensures that yi = 1),

and further that mi equals 1 where φ′ = 1 (the probability of such a scenario is q(1− p)(1− (1− p)d−1)p).

Adding together the probabilities corresponding to these two scenarios gives the desired result.

�

We now recall specific forms we need of standard concentration inequalities, that we use to make statements

about the expected value of objective value of NCBP-LP.

Claim 12 (Chernoff bound (multiplicative form) [17]): Let {Wi}Ti=1 be a sequence i.i.d. binary random variables

with probability distribution P (Wi = 1) = θ.

P

(∣∣∣∣∣
T∑
i=1

Wi

T
− θ

∣∣∣∣∣ > σ

)
≤ exp

(
−2Tσ2

)
, (additive form), (58)

P

(∣∣∣∣∣
T∑
i=1

Wi

T
− θ

∣∣∣∣∣ > σθ

)
≤ exp

(
−Tσ

2θ

2

)
, (multiplicative form). (59)

Finally, Claim 13 below demonstrates that regardless of which direction x is perturbed in, as long as it remains

within the feasible set for NCBP-LP, with high probability over M and the noise vector ν, the value of the objective

function of NCBP-LP increases. This implies that the minimization performed in NCBP-LP returns x̂ = x correctly,

and completes the proof.

February 2, 2012 DRAFT



25

x x′ = x + φ′ x′′ = x + φ′′

(1, 1, 0) (0, 1, 1) (0, 1, 0)

1. 2. 3. 4. 5. 6. 7. 8(a). 8(b). 9(a). 9(b).

ŷi η(x) yi mi P (ŷi,mi|x) ηi(mi,x) ηi(mi,x) ηi(mi,x
′) E(mi,∆

′
i) ηi(mi,x

′′) E(mi,∆
′′
i )

1 (1−mi.x)+

0
(0, 0, 0) q(1− p)3 1 1 1 0 1 0

(0, 0, 1) q(1− p)2p (1− x3)+ 1 0 −q(1− p)2p 1 0

1

(0, 1, 0) (1− q)(1− p)2p (1− x2)+ 0 0 0 0 0

(0, 1, 1) (1− q)(1− p)p2 (1− x2 − x3)+ 0 0 0 0 0

(1, 0, 0) (1− q)(1− p)2p (1− x1)+ 0 1 (1− q)(1− p)2p 1 (1− q)(1− p)2p

(1, 0, 1) (1− q)(1− p)p2 (1− x1 − x3)+ 0 0 0 1 (1− q)(1− p)p2

(1, 1, 0) (1− q)(1− p)p2 (1− x1 − x2)+ 0 0 0 0 0

(1, 1, 1) (1− q)p3 (1− x1 − x2 − x3)+ 0 0 0 0 0

(1− 2q)(1− p)2p (1− q)(1− p)p

0 mi.x

0
(0, 0, 0) (1− q)(1− p)3 0 0 0 0 0 0

(0, 0, 1) (1− q)(1− p)2p x3 0 1 (1− q)(1− p)2p 0 0

1

(0, 1, 0) q(1− p)2p x2 1 1 0 1 0

(0, 1, 1) q(1− p)p2 x2 + x3 1 2 q(1− p)p2 1 0

(1, 0, 0) q(1− p)2p x1 1 0 −q(1− p)2p 0 −q(1− p)2p

(1, 0, 1) q(1− p)p2 x1 + x3 1 0 0 0 −q(1− p)p2

(1, 1, 0) q(1− p)p2 x1 + x2 2 1 −q(1− p)p2 1 −q(1− p)p2

(1, 1, 1) qp3 x1 + x2 + x3 2 2 0 1 −qp3

(1− 2q)(1− p)2p −qp

TABLE I. Suppose x = (1, 1, 0). Choose some x′ 6= x (in this example, x′ = x + φ′ and x′′ = x + φ′′, where φ′ = (−1, 0, 1) and

φ′′ = (−1, 0, 0) are the two types of perturbation vectors). This example analyzes the expectation (over the randomness in the particular row

mi of the measurement matrix M ) of the difference in value of the corresponding slack variables ηi(x) and ηi(x′) in column 8(b), and also

between ηi(x) and ηi(x′′) in column 9(b). We distinguish between the cases when yi equals zero, and when it equals one, and compute the

corresponding quantities separately. To compute these, we consider the columns of the table above sequentially from left to right. Column 1

considers the two possible values of the observed vector ŷi. Column 2 gives the corresponding values of the slack variables corresponding to

the ith test, as returned by the constraints (12) and (13) of NCBP-LP – here (f(x))+ denotes the function max{f(x), 0}. Column 3 indexes

the possibilities of the (noiseless) test outcomes yi, and column 4 enumerates possible values for mi, the i-th row of M , that could have

generated the values of yi in column 3, given that x = (1, 1, 0). Column 5 computes the probability of a particular observation ŷi and a row

mi, given that the noiseless output y equaled a particular value. Column 6 computes the function in column 2, given that mi equals the value

given in Column 4. Columns 7 and 8(a) respectively explicitly compute the value of the function in column 6 for the vectors x and x′ – the

red entries in column 8(a) index those locations where η(x′), the slack variable for the perturbed vector, is less than η(x), and the green cells

indicate those locations where the situation is reverse. Column 8(b) then computes the product of column 5 with the difference of the entries in

column 7 from those of column 8(a), i.e., the expected change in the value of the slack variable ηi(). The value (1− 2q)(1− p)2p in blue at

the bottom represents the expected change (averaged over all possible tuples (yi,mi, ŷi)). Columns 9(a) and 9(b) compute values analogous

to columns 8(a) and 8(b), for the perturbation vector φ′′ = (−1, 0, 0).
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Claim 13: Choose T as βLPD log(n), with βLP as given in Theorem 7. Then NCBP-LP fails with a probability

of error of at most n−δ .

Proof of Claim 13: Since each mi is chosen independently, the random variables corresponding to each type of

cost perturbation variable in (53) are distributed i.i.d. according to (54)-(57).

We define the sets S ′1 = {i|∆′1,i 6= 0}, S ′0 = {i|∆′0,i 6= 0}, and S ′′ = {i|∆′′1,i,∆′′0,i 6= 0}. By (54)-(57), the

expected sizes of S ′1, S ′0 and S ′′ respectively equal

E(|S ′1|) = Tp(1− p)d > βLP log(n)

e
, (60)

E(|S ′0|) = Tp(1− p)((1− p)d−1(1− q) + 2q) >
βLP (1− q + 2qe) log(n)

e
. (61)

E(|S ′′|) = Tp((1− p)d−1(1− q) + q) >
βLP (1− q + qe) log(n)

e
, (62)

The above inequalities follow by using the definition of p = 1/D, T as defined in this claim, and (1− 1/D)d−1 >

(1− 1/D)D > 1/e. Hence by the concentration inequality (59) above, for some positive constants σ′1, σ′0 and σ′′,

P (|S ′1| < E(|S ′1|)(1− σ′1)) < n−
βLP (σ′1)2

2e , (63)

P (|S ′0| < E(|S ′0|)(1− σ′0)) < n−βLP ( 1−q+2qe
2e )(σ′0)2 , (64)

P (|S ′′| < E(|S ′′|)(1− σ′′)) < n−βLP ( 1−q+qe
2e )σ′′2 . (65)

Next, we compute conditional probabilities, conditioning on the event that i belongs to a set (in fact it may

belong to several, but we compute each of these conditional probabilities individually),

P
(
∆′1,i = 1|i ∈ S ′1

)
= 1− q, P

(
∆′1,i = −1|i ∈ S ′1

)
= q,

P
(
∆′0,i = 1|i ∈ S ′0

)
=

(1− p)d−1(1− q) + q

(1− p)d−1(1− q) + 2q
, P

(
∆′0,i = −1|i ∈ S ′0

)
=

q

(1− p)d−1(1− q) + 2q
,

P
(
∆′′1,i = 1|i ∈ S ′′

)
=

(1− p)d−1(1− q)
(1− p)d−1(1− q) + q

, P
(
∆′′0,i = −1|i ∈ S ′′

)
=

q

(1− p)d−1(1− q) + q
. (66)

In the limit D →∞, (66) reduces to

P
(
∆′1,i = 1|i ∈ S ′1

)
= 1− q, P

(
∆′1,i = −1|i ∈ S ′1

)
= q, (67)

P
(
∆′0,i = 1|i ∈ S ′0

)
=

1− q + qe

1− q + 2qe
, P

(
∆′0,i = −1|i ∈ S ′0

)
=

qe

1− q + 2qe
, (68)

P
(
∆′′1,i = 1|i ∈ S ′′

)
=

1− q
1− q + qe

, P
(
∆′′0,i = −1|i ∈ S ′′

)
=

qe

1− q + qe
. (69)

By the definition of the cost perturbation variables and (11) the objective value of NCBP-LP for x′ = x + φ′

equals the objective value of NCBP-LP for x plus the objective value perturbation∑
i∈S′1

(1(∆′1,i = 1)− 1(∆′1,i = −1)) +
1

e

∑
i∈S′0

(1(∆′0,i = 1)− 1(∆′0,i = −1)). (70)
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The first term18 in (70) is non-positive if and only if
∑
i∈S′1

1(∆′1,i = 1) equals
∑
i∈S′1

1(∆′1,i = −1). By (67)

and the concentration inequality (58) this happens with probability at most exp
(
− |S

′
1|(1−2q)2

2

)
. But by (63) and

(60), the probability that |S ′1| is less than βLP log(n)(1−σ′1)
e is at most n−

βLP (σ′1)2

2e . Hence the probability that the

first term in (70) is non-positive is at most

n−
βLP (1−σ′1)(1−2q)2

2e + n−
βLP (σ′1)2

2e . (71)

The second term in (70) is non-positive if and only if
∑
i∈S′0

1(∆′0,i = 1) equals
∑
i∈S′0

1(∆′0,i = −1). By

(68) and the concentration inequality (58) this happens with probability at most exp
(
− |S′2|(1−q)

2

2(1−q+2qe)2

)
. But by (64)

and (61), the probability that |S ′0| is less than βLP (1−q+2qe) log(n)(1−σ′0)
e is at most n−

βLP (1−q+2qe)(σ′0)2

2e . Hence the

probability that the second term in (70) is non-positive is at most

n−
βLP (1−σ′0)(1−q)2

2(1−q+2qe)e + n−
βLP (1−q+2qe)(σ′0)2

2e . (72)

Similarly, by the definition of the cost perturbation variables and (11) the objective value of NCBP-LP for

x′′ = x + φ′′ equals the objective value of NCBP-LP for x plus the objective value perturbation∑
i∈S′′

(1(∆′′1,i = 1)− 1(∆′′1,i = −1)) +
1

e

∑
i∈S′′

(1(∆′′0,i = 1)− 1(∆′′0,i = −1)). (73)

But by (54) and (55), 1(∆′′0,i = 1) and 1(∆′′1,i = −1) are always zero. Hence (73) is non-negative if and only

if
∑
i∈S′′ 1(∆′′1,i = 1) equals e

∑
i∈S′′ 1(∆′′0,i = −1). By (69) and the concentration inequality (58) this happens

with probability at most exp
(
− |S′′|2(1−2q)2e2

(1−q+qe)2(1+e)2

)
. But by (65) and (62), the probability that |S ′′| is less than

βLP (1−q+qe) log(n)(1−σ′′)
e is at most n−

βLP (1−q+qe)(σ′′)2
2e . Hence the probability that (73) is non-positive is at most

n
− 2βLP e(1−σ

′′)(1−2q)2

(1−q+qe)(1+e)2 + n−
βLP (1−q+qe)(σ′′)2

2e . (74)

We now note that (71) and (72) give bounds on the probability that a single perturbation vector in Φ′ causes a

non-positive perturbation in optimal value of the objective function of NCBP-LP, and similarly (74) does the same

for a vector in Φ′′. But there are d(n− d) vectors in Φ′, and d vectors in Φ′′. We take a union bound over all of

these vectors by multiplying the terms in (71) and (72) by d(n− d), and the terms in (74) by d. Hence the overall

bound on the probability that even a single vector from Φ′∪Φ′′ causes a non-positive perturbation in optimal value

of the objective function of NCBP-LP is given by

d(n− d)

(
n−

βLP (1−σ′1)(1−2q)2

2e + n−
βLP (σ′1)2

2e + n−
βLP (1−σ′0)(1−q)2

2(1−q+2qe)e + n−
βLP (1−q+2qe)(σ′0)2

2e

)
(75)

+d

(
n
− 2βLP e(1−σ

′′)(1−2q)2

(1−q+qe)(1+e)2 + n−
βLP (1−q+qe)(σ′′)2

2e

)
. (76)

18One can in fact improve the bounds somewhat by simultaneously considering both the first and the second term simultaneously, but the

corresponding calculations are very messy and not very insightful, hence we instead separately optimize these two terms leading to equations

that are somewhat more tractable to symbolic manipulations.
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One can further optimize by choosing σ′0, σ′1 and σ′′ so that each of the terms in (76) is as small as possible,

but the corresponding calculations have a messy closed form solution and are not very insightful, hence we simply

choose σ′0 = σ′1 = σ′′ = 1/2 and obtain

d(n− d)

(
n−

βLP (1−2q)2

4e + n−
βLP
8e + n−

βLP (1−q)2
4(1−q+2qe)e + n−

βLP (1−q+2qe)

8e

)
+ d

(
n
− 2βLP e(1−2q)2

2(1−q+qe)(1+e)2 + n−
βLP (1−q+qe)

8e

)
.

(77)

We then choose βLP as

max

{
4e (δ + 1 + Γ)

(1− 2q)2
, 8e (δ + 1 + Γ),

4(1− q + 2qe)e (δ + 1 + Γ)

(1− q)2
,

8e (δ + 1 + Γ)

(1− q + 2qe)
,

(1− q + qe) (δ + Γ) (1 + e)2

e(1− 2q)2
,

8e (δ + Γ)

(1− q + qe)

}
(78)

so that the maximum of the six terms in (77) is less than n−δ (here Γ = (ln d)/(lnn) is a constant in [0, 1)). This

shows that for large d, n and D, with probability at least 1−n−δ all vectors in Φ′ and Φ′′ cause a strictly positive

change in the optimal value of the objective function of NCBP-LP.

Finally, we note that the set of feasible (x̄, η) of NCBP-LP forms a convex set. Hence if η strictly increases

along every direction in Φ′ and Φ′′, then in fact η strictly increases when the true x is perturbed in any direction.

Hence the true x must be the solution to NCBP-LP. � �

Proof of Theorem 6:

We substitute q = 0 into (78) and choose the largest term to obtain the corresponding β as

8e (δ + 1 + Γ), (79)

�

Proof of Theorem 8:

The proof is essentially the same as in the case of Theorem 7. The only different lies in the fact that ηi now depends

only on the tests with positive outcomes. Hence (57) and (55) are not required, and the difference in expectation

implies that the claim analogous to Claim 13 has a slightly different concentration result. In particular only the

first, second, and fifth terms in (78) survive, hence the corresponding βSLP is

max

{
4e (δ + 1 + Γ)

(1− 2q)2
, 8e (δ + 1 + Γ) ,

(1− q + qe) (δ + Γ) (1 + e)2

e(1− 2q)2

}
(80)

�

VI. CONCLUSION

In this work we consider the problem of non-adaptive group-testing with possibly noisy measurements. We

provide information-theoretic lower bounds on the number of tests necessary to identify the set of defective items

with high probability. We also present a suite of algorithms that match these lower bounds up to “small” factors.

In particular, we consider three types of decoding algorithms – “OMP-type”, “BP-type”, and “LP-type”. While

the OMP-type and BP-type algorithms are not new, their analysis is tighter than before and results in an explicit
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characterization of their performance. In the case of the BP-type algorithm, the analysis is novel, and depends

on a novel use of the well-studied Coupon Collector Problem. The LP-type algorithms are entirely new, and the

“perturbation analysis” used in these algorithms is possibly interesting in its own right for a larger class of sparse

recovery problems.
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