Distributed Interference Compensation for Wireless Networks

Jianwei Huang, Member, IEEE, Randall A. Berry, Member, IEEE, and Michael L. Honig, Fellow, IEEE

Abstract—We consider a distributed power control scheme for wireless ad hoc networks, in which each user announces a price that reflects compensation paid by other users for their interference. We present an asynchronous distributed algorithm for updating power levels and prices. By relating this algorithm to myopic best response updates in a fictitious game, we are able to characterize convergence using supermodular game theory. Extensions of this algorithm to a multichannel network are also presented, in which users can allocate their power across multiple frequency bands.

Index Terms—Distributed algorithms, game theory, power control, pricing.

I. INTRODUCTION

MITIGATING interference is a fundamental problem in wireless networks. A basic technique for this is to control the nodes’ transmit powers. In an ad hoc wireless network, power control is complicated by the lack of centralized infrastructure, which necessitates the use of distributed approaches. This paper addresses distributed power control for rate adaptive users in a wireless network. We consider two models: a single-channel spread-spectrum (SS) network, where all users spread their power over a single-frequency band, and a multichannel model, where each user can allocate its power over multiple frequency bands. The latter model is motivated by multicarrier transmission [e.g., orthogonal frequency-division-multiplexing (OFDM)], where each channel might represent a single-carrier, or a group of adjacent carriers. In both cases, the transmission rate for each user depends on the received signal-to-interference plus noise ratio (SINR). Our objective is to coordinate user power levels to optimize overall performance, measured in terms of total network utility.

We study protocols in which the users exchange price signals that indicate the “cost” of received interference. Pricing mechanisms for allocating resources in networks have received considerable attention for both wire-line (e.g., [1] and [2]) and wireless networks (e.g., [3]–[5]). The problem here differs from much of the previous work because, due to interference, the users’ objective functions are coupled, and the overall network objective may not be concave in the allocated resource (transmit power). Also, in most previous work, prices are Lagrange multipliers for some constrained resource such as power or bandwidth; here the prices reflect the interference or externalities among the users instead of a resource constraint. Our single-channel model is similar to that considered in [6], which also discusses combined power and rate control. The power adaptation in [6] solves a similar problem to that considered here using gradient updates. Instead, we consider an approach based on supermodular game theory [7], which allows for a larger class of utility functions and appears to have faster convergence.

A variety of game-theoretic approaches have been applied to network resource allocation, as surveyed in [8]. Supermodular game theory, in particular, has been used to study power control in [9]–[11]. Our approach differs in that: 1) we focus on an ad hoc network instead of a cellular network; 2) we consider a different functional form for the utilities than some authors; and 3) we do not directly model the problem as a noncooperative game. Instead, the users voluntarily cooperate with each other by exchanging interference information. We introduce a fictitious game and apply a strategy space transformation to view this algorithm as a supermodular game. Other work on power control in code-division multiple-access (CDMA) cellular and ad hoc networks includes [9], [10], and [12]–[14]. In most prior work on ad hoc networks, a transmission is assumed to be successful if a fixed minimum SINR requirement is met. This is true for fixed-rate communications. However, this is not the case for “elastic” data applications, which can adapt transmission rates. In this paper, we focus on rate-adaptive users, where the goal of power control is to maximize total network performance instead of guarantee interference margins for each user.

For multichannel networks, an additional consideration is how the users allocate their power across the available channels. We decompose this power allocation by introducing a “power price” for each user, which represents a dual variable corresponding to the user’s total power constraint. Each user must now take into account both the interference prices and their own power price. We present a distributed gradient projection algorithm to solve for the optimal power prices. This is similar in spirit to the optimization flow control algorithm for wire-line networks in [2]. However, here the dual variables are not determined by each link in the network, but rather by each user. Also, the corresponding primal problem is not separable due to the interference.
Because we assume that the users cooperate, we ignore incentive issues, which may occur in networks with noncooperative users. For example, in that scenario, a user may attempt to manipulate its announced interference prices to increase its own utility at the expense of the overall network utility. That can, of course, compromise the performance of the distributed algorithms presented here. Although we do not explore this issue further in this work, we note that it may be possible to “hard wire” the power control algorithm into handsets, making such a manipulation of price information difficult.

In the next section, we describe and analyze our distributed price/power adjustment algorithm for a single-channel network. We then turn to the multichannel model in Section III. Simulation results are given in Section IV, and conclusions are presented in Section V.

II. SINGLE-CHANNEL NETWORKS

We consider a snapshot of an ad hoc network with a set \(M = \{1, \ldots, M\} \) of distinct node pairs. As shown in Fig. 1, each pair consists of one dedicated transmitter and one dedicated receiver.1 We use the terms “pair” and “user” interchangeably in the following. In this section, we assume that each user \(i \) transmits an SS signal spread over the total bandwidth of \(B \) Hz. Over the time-period of interest, the channel gains of each pair are fixed. The channel gain between user \(i \)’s transmitter and user \(j \)’s receiver is denoted by \(h_{ij} \). Note that, in general, \(h_{ij} \neq h_{ji} \), since the latter represents the gain between user \(j \)’s transmitter and user \(i \)’s receiver.

Each user \(i \)’s quality of service is characterized by a utility function \(u_i(\gamma_i) \), which is an increasing and strictly concave function of the received SINR

\[
\gamma_i(p) = \frac{p_i h_{ii}}{n_0 + \frac{1}{B} \sum_{j \neq i} p_j h_{ji}}
\]

where \(\mathbf{p} = (p_1, \ldots, p_M) \) is a vector of the users’ transmission powers and \(n_0 \) is the background noise power. The users’ utility functions are coupled due to mutual interference. An example utility function is a logarithmic utility function \(u_i(\gamma_i) = \theta_i \log(\gamma_i) \), where \(\theta_i \) is a user dependent priority parameter.2

The problem we consider is to specify \(\mathbf{p} \) to maximize the utility summed over all users, where each user \(i \) must also satisfy a transmission power constraint, \(p_i \in \mathcal{P}_i = [P_i^{\min}, P_i^{\max}] \), i.e.,

\[
\max_{\mathbf{p} \in \bigcap_{i \in M} \mathcal{P}_i} \sum_{i=1}^{M} u_i(\gamma_i(p))
\]

Note that a special case is \(P_i^{\min} = 0 \); i.e., the user may choose not to transmit.3

As a baseline distributed approach, consider the case where the users do not exchange any information and simply choose transmission powers to maximize their individual utilities. As in [9], this can be modeled as a noncooperative power (NCP) control game

\[
G_{NCP} = [\mathcal{M}, \{\mathcal{P}_i\}, \{u_i\}]
\]

where the players in the game correspond to the users in \(\mathcal{M} \); each player picks a transmission power from the strategy set \(\mathcal{P}_i \) and receives a payoff \(u_i(\gamma_i) \). In this game, \(\mathbf{p} \) is the power profile, and the power profile of user \(i \)’s opponents is defined to be \(p_{-i} = (p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_M) \), so that \(\mathbf{p} = (p_i, p_{-i}) \).

Similar notation will be used for other quantities. User \(i \)’s best response is

\[
\mathcal{B}_i(p_{-i}) = \arg \max_{p_i \in \mathcal{P}_i} u_i(\gamma_i(p_i, p_{-i}))
\]

i.e., the \(p_i \) that maximizes \(u_i(\gamma_i(p_i, p_{-i})) \) given a fixed \(p_{-i} \). A power profile \(\mathbf{p}^* \) is a Nash equilibrium (NE) of \(G_{NCP} \) if it is a fixed point of the best responses, i.e.,

\[
u_i(\gamma_i(p_i^*, p_{-i}^*)) \geq u_i(\gamma_i(p_i^*, p_{-i}^*)), \quad \forall p_i^* \in \mathcal{P}_i, i \in \mathcal{M}.
\]

Since each user’s payoff \(u_i(\gamma_i(p_i, p_{-i})) \) is strictly increasing with \(p_i \), and there is no penalty for high transmission power as long as \(p_i \in \mathcal{P}_i \), it is easy to verify that the unique NE of \(G_{NCP} \) is \(\mathbf{p}^*_{NCP} = (P_i^{\max})_i \), i.e., each transmitter uses its maximum power. This solution can be far from the socially optimal solution given by Problem (P1).

Although \(u_i(\cdot) \) is concave, the objective in Problem (P1) may not be concave in \(\mathbf{p} \). However, it is easy to verify that any local optimum, \(\mathbf{p}^* = (P_1^*, \ldots, P_M^*) \), of this problem will be regular (see [15, p. 309]), and so must satisfy the Karush–Kuhn–Tucker (KKT) necessary conditions.

1For example, this could represent a particular schedule of transmissions determined by an underlying routing and MAC protocol.

2In the high SINR regime, logarithmic utility approximates the Shannon capacity \(\log(1 + \gamma_i) \) weighted by \(\theta_i \). For low SINR, a user’s rate is approximately linear in SINR, and so this utility is proportional to the logarithm of the rate.

3Occasionally, for technical reasons, we require \(P_i^{\min} > 0 \); in these cases, \(P_i^{\min} \) can be chosen arbitrarily small so that this restriction has little effect. Note that for certain utilities, e.g., \(\theta_i \log(\gamma_i) \), all assigned powers must be strictly positive, since as \(P_i \rightarrow 0 \), the utility approaches \(-\infty \).
Lemma 1 (KKT Conditions): For any local maximum \(\mathbf{p}^* \) of Problem (P1), there exist unique Lagrange multipliers \(\lambda_{i,t}^*, \lambda_{i,t}^* \) and \(\lambda_{i,t}^*, \lambda_{i,t}^* \) such that for all \(i \in \mathcal{M} \)

\[
\frac{\partial u_i}{\partial p_i} (\gamma_i(\mathbf{p}^*)) + \sum_{j \neq i} \frac{\partial}{\partial p_i} (\gamma_j(\mathbf{p}^*)) = \lambda_{i,t}^* - \lambda_{i,t}^*
\]

\[
\lambda_{i,t}^* (p_i^* - P_i^\text{max}) = 0, \quad \lambda_{i,t}^* (p_i^\text{min} - p_i^*) = 0, \quad \lambda_{i,t}^* \geq 0.
\]

Let

\[
\pi_j(p_{-j}, p_{-j}) = -\frac{\partial u_j(\gamma_j(p_{-j}, p_{-j}))}{\partial I_j(p_{-j})}
\]

where \(I_j(p_{-j}) = \sum_{k \neq j} p_k h_{kj} \) is the total interference received by user \(j \) (before bandwidth scaling). Here, \(\pi_j(p_{-j}, p_{-j}) \) is always nonnegative and represents user \(j \)'s marginal increase in utility per unit decrease in total interference. Using (4), condition (2) can be written as

\[
\frac{\partial u_i(\gamma_i(\mathbf{p}^*))}{\partial p_i} - \sum_{j \neq i} \pi_j (p_j^*, p_{-j}) h_{ij} = \lambda_{i,t}^* - \lambda_{i,t}^*.
\]

Viewing \(\pi_j \) (as \(\pi_j(p, p_{-j}) \)) as a price charged to other users for generating interference to user \(i \), condition (5) is a necessary and sufficient optimality condition for the problem in which each user \(i \) specifies a power level \(p_i \in \mathcal{P}_i \) to maximize the following surplus function:

\[
s_i(p_i; p_{-i}, \pi_{-i}) = u_i(\gamma_i(p_i, p_{-i})) - p_i \sum_{j \neq i} \pi_j h_{ij}
\]

assuming fixed \(p_{-i} \) and \(\pi_{-i} \) (i.e., each user is a price taker and ignores any influence he may have on these prices). User \(i \), therefore, maximizes the difference between its utility minus its payment to the other users in the network due to the interference it generates. The payment is its transmit power times a weighted sum of other users’ powers, with weights equal to the channel gains between user \(i \)'s transmitter and the other users’ receivers. This pricing interpretation of the KKT conditions motivates the following asynchronous distributed pricing (ADP) algorithm.

A. Asynchronous Distributed Pricing (ADP) Algorithm

In the ADP algorithm, each user announces a single price and all users set their transmission powers based on the received prices. Prices and powers are asynchronously updated. For \(i \in \mathcal{M} \), let \(T_{i,p} \) and \(T_{i,\pi} \) be two unbounded sets of positive time instances at which user \(i \) updates its power and price, respectively. User \(i \) updates its power according to

\[
W_i(p_{-i}; \pi_{-i}) = \arg \max_{p_i \in \mathcal{P}_i} s_i(p_i; p_{-i}, \pi_{-i})
\]

which corresponds to maximizing the surplus in (6). Each user updates its price according to

\[
C_i(\mathbf{p}) = \frac{\partial u_i(\gamma_i(\mathbf{p}))}{\partial I_i(p_{-i})} - \frac{\partial u_i(\gamma_i(\mathbf{p}))}{\partial I_i(p_{-i})}
\]

which corresponds to (4). Using these update rules, the ADP algorithm is given in Algorithm 1. Note that in addition to being asynchronous across users, each user also need not update its power and price at the same time.

Algorithm 1 The ADP Algorithm

1. **INITIALIZATION:** For each user \(i \in \mathcal{M} \) choose some power \(p_i(0) \in \mathcal{P}_i \) and price \(\pi_i(0) \geq 0 \).

2. **POWER UPDATE:** At each \(t \in T_{i,p} \), user \(i \) updates its power according to

\[
p_i(t) = W_i(p_{-i}(t^{-}), \pi_{-i}(t^{-)}).
\]

3. **PRICE UPDATE:** At each \(t \in T_{i,\pi} \), user \(i \) updates its price according to

\[
\pi_i(t) = C_i(\mathbf{p}(t^{-})).
\]

In the ADP algorithm, not only are the powers and prices generated in a distributed fashion, but also each user only needs to acquire limited information. To see this note that the power update function can be written as

\[
W_i(p_{-i}, \pi_{-i}) = \left[\frac{p_i}{\pi_i(\mathbf{p})} g_i \left(\frac{p_i}{\pi_i(\mathbf{p})} \left(\sum_{j \neq i} \pi_j h_{ij} \right) \right) \right]_{p_i = 0}^{p_i = P_i}\]

where \(p_i/\pi_i(\mathbf{p}) \) is independent of \(p_i \), and

\[
g_i(x) = \begin{cases} \infty, & 0 < x \leq u_i'(\infty) \\ u_i'(\infty) - u_i'(x), & 0 < x < u_i'(0) \\ 0, & u_i'(0) \leq x \\ \end{cases}
\]

Likewise, the price update can be written as

\[
C_i(\mathbf{p}) = \frac{\partial u_i(\gamma_i(\mathbf{p}))}{\partial I_i(\mathbf{p})} - \frac{\partial u_i(\gamma_i(\mathbf{p}))}{\partial I_i(\mathbf{p})}
\]

From these expressions, it can be seen that to implement the updates, each user \(i \) only needs to know: 1) its own utility \(u_i \), the current SINR \(\gamma_i \) and channel gain \(h_{ii} \); 2) the “adjacent” channel gains \(h_{ij} \) for \(j \in \mathcal{M} \) and \(j \neq i \); and 3) the price profile \(\mathbf{p} \). By assumption each user knows its own utility. The SINR \(\gamma_i \) and channel gain \(h_{ii} \) can be measured at the receiver and fed back to the transmitter. Measuring the adjacent channel gains \(h_{ij} \) can be accomplished by having each receiver periodically broadcast a beacon; assuming reciprocity, the transmitters can then measure these channel gains. The adjacent channel gains account for only \(1/M \) of the total channel gains in the network; each user does not need to know the other gains. The price information could also be periodically broadcast through this beacon. Since each user announces only a single price, the number of prices scales linearly with the size of the network. Also, numerical results show that there is little effect on performance if users only convey their prices to “nearby” transmitters, i.e., those generating the strongest interference [16].

4Of course, simultaneous updates of powers and prices per user and synchronous updating across all users are just special cases of Algorithm 1.

5Notation \([x]_a \) means \(\max \{ \min \{ x, b \}, a \} \).
Denote the set of fixed points of the ADP algorithm by

\[\mathcal{F}_{\text{ADP}} \equiv \{(p^\pi, \pi^p) = (W(p^\pi, \pi^p), \mathcal{C}(\pi^p))\} \tag{7} \]

where \(W(p^\pi, \pi^p) = (W_k(p^\pi_k, \pi^p_k))_{k=1}^M \) and \(\mathcal{C}(\pi^p) = (C_k(\pi^p_k))_{k=1}^M \). Using the strict concavity of \(u_i(\gamma^j) \) in \(\gamma_i \), the following result can be easily shown.

Lemma 2: A power profile \(\pi^p \) satisfies the KKT conditions of Problem (P1) (for some choice of Lagrange multipliers) if and only if \((\pi^p, \mathcal{C}(\pi^p)) \in \mathcal{F}_{\text{ADP}} \).

If there is only one solution to the KKT conditions, then it must be the global maximum and the ADP algorithm would reach that point if it converges.\(^6\) In general, \(\mathcal{F}_{\text{ADP}} \) may contain multiple points including local optima or saddle points.

B. Convergence Analysis of ADP Algorithm

We next characterize the convergence of the ADP algorithm by viewing it in a game theoretic context. A natural generalization of the NCP game is to consider a game where each player \(i \)'s strategy includes specifying both a power \(p_i \) and a price \(\pi_i \) to maximize a payoff equal to the surplus in (6). However, since there is no penalty for user \(i \) announcing a high price, it can be shown that each user’s best response is to choose a large enough price to force all other users transmit at \(P_i^{\text{min}} \). This is certainly not a desirable outcome and suggests that the prices should be determined externally by another procedure.\(^7\) Instead, we consider the following fictitious power-price (FPP) control game

\[G_{\text{FPP}} = \left[\mathcal{F}W \cup \mathcal{F}C, \{P_i^{\text{FPP}}, P_i^{\text{FC}}\}, \{s_i^{\text{FPP}}, s_i^{\text{FC}}\} \right] \]

where the players are from the union of the sets \(\mathcal{F}W \) and \(\mathcal{F}C \), which are both copies of \(\mathcal{M} \). \(\mathcal{F}W \) is a fictitious power player set; each player \(i \in \mathcal{F}W \) chooses a power \(p_i \) from the strategy set \(P_i^{\text{FPP}} = P_i \) and receives payoff

\[s_i^{\text{FPP}}(p_i; p_{-i}, \pi_{-i}) = u_i(\gamma^j) - \sum_{j \neq i} \pi_j h_{ij} p_i. \tag{8} \]

\(\mathcal{F}C \) is a fictitious price player set; each player \(i \in \mathcal{F}C \) chooses a price \(\pi_i \) from the strategy set \(P_i^{\text{FC}} = [0, \pi_i^0] \) and receives payoff

\[s_i^{\text{FC}}(\pi_i; p) = - (\pi_i - C_i(p))^2. \tag{9} \]

Here, \(\pi_i = \inf \mathcal{C}_i(p) \), which could be infinite for some utility functions.

In \(G_{\text{FPP}} \), each user in the ad hoc network is split into two fictitious players, one in \(\mathcal{F}W \) who controls power \(p_i \) and the other in \(\mathcal{F}C \) who controls price \(\pi_i \). Although users in the real network cooperate with each other by exchanging interference information (instead of choosing prices to maximize their surplus), each fictitious player in \(G_{\text{FPP}} \) is selfish and maximizes its own payoff function. In the rest of this section, a “user” refers to one of the \(M \) transmitter-receiver pairs in set \(\mathcal{M} \), and a “player” refers to one of the \(2M \) fictitious players in the set \(\mathcal{F}W \cup \mathcal{F}C \).

\(^6\)In the following section, we will give conditions under which this occurs.

\(^7\)A similar situation arises in [3], where users in a multihop network announce prices charging other users for packets they forward. In that case, the prices also cannot be determined by individual surplus optimizations.

In \(G_{\text{FPP}} \), the players’ best responses are given by

\[B_i^{\text{FW}}(p_{-i}, \pi_{-i}) = W_i(p_{-i}, \pi_{-i}), \forall i \in \mathcal{F}W \]

and

\[B_i^{\text{FC}}(\pi) = C_i(\pi), \forall i \in \mathcal{F}C \]

where \(W_i \) and \(C_i \) are the update rules for the ADP algorithm. In other words, the ADP algorithm can be interpreted as if the players in \(G_{\text{FPP}} \) employ asynchronous myopic best response (MBS) updates, i.e., the players update their strategies according to the best responses assuming the other player’s strategies are fixed. It is known that the set of fixed points of MBS updates are the same as the set of NEs of a game \(G \), Lemma 4.2.1. Therefore, we have the following.

Lemma 3: \((\pi^*, \pi^*) \in \mathcal{F}_{\text{ADP}} \) if and only if \((\pi^*, \pi^*) \) is a NE of \(G_{\text{FPP}} \).

Together with Lemma 2, it follows that proving the convergence of asynchronous MBS updates of \(G_{\text{FPP}} \) is sufficient to prove the convergence of the ADP algorithm to a solution of KKT conditions. We next analyze this convergence using supermodular game theory [7].

We first introduce some definitions.\(^8\) A real \(m \)-dimensional set \(\mathcal{Y} \) is a sublattice of \(\mathbb{R}^m \) if for any two elements \(a, b \in \mathcal{Y} \), the component-wise minimum, \(a \wedge b \), and the component-wise maximum, \(a \vee b \), are also in \(\mathcal{Y} \). In particular, a compact sublattice has a (component-wise) smallest and largest element. A twice differentiable function \(f \) has increasing differences in variables \((x, t) \) if \(\frac{\partial^2 f}{\partial x \partial t} \geq 0 \) for any feasible \(x \) and \(t \).\(^9\) A function \(f \) is supermodular in \(x = (x_1, \ldots, x_m) \) if it has increasing differences in \((x_i, x_j) \) for all \(i \neq j \).\(^10\) Finally, a game \(G = \{\mathcal{M}, \{P_i\}, \{s_i\}\} \) is supermodular if for each player \(i \in \mathcal{M} \), a) the strategy space \(P_i \) is a nonempty and compact sublattice, and b) the payoff function \(s_i \) is continuous in all players’ strategies, is supermodular in player \(i \)'s own strategy, and has increasing differences between any component of player \(i \)'s strategy and any component of any other player’s strategy. The following theorem summarizes several important properties of these games.

Theorem 1: In a supermodular game, \(G = \{\mathcal{M}, \{P_i\}, \{s_i\}\} \).

(a) The set of NEs is a nonempty and compact sublattice and so there is a component-wise smallest and largest NE.

(b) If the players’ best responses are single-valued, and each user uses MBS updates starting from the smallest (largest) element of its strategy space, then the strategies monotonically converge to the smallest (largest) NE.

(c) If each user starts from any feasible strategy and uses MBS updates, the strategies will eventually lie in the set bounded component-wise by the smallest and largest NE. If the NE is unique, the MBS updates globally converge to that NE from any initial strategies.

Properties a) follows in [7, Lemmas 4.2.1 and 4.2.2]; b) follows from [10, Theorem 1]; and c) can be shown by [17, Theorem 8].

\(^8\)More general definitions related to supermodular games are given in [7].

\(^9\)If we choose \(x \) to maximize a twice differentiable function \(f(x, \pi) \), then the first-order condition gives \(\partial f(x, \pi)/\partial x \big|_{x=x^*} = 0 \), and the optimal value \(x^* \) increases with \(t \) if \(\partial^2 f/\partial x^2 \partial t > 0 \).

\(^10\)A function \(f \) is always supermodular in a single variable \(x \).
Next, we show that by an appropriate strategy space transformation certain instances of G_{FPP} are equivalent to supermodular games, and so Theorem 1 applies. We first study a simple two-user network, then extend the results to a M-user network.

1) Two-User Networks: Let G_{FPP}^2 be the FPP game corresponding to a two-user network; this will be a game with four players, two in \mathcal{FV} and two in \mathcal{F}. First, we check whether G_{FPP}^2 is supermodular. Each user i in \mathcal{FV} clearly has a nonempty and compact sublattice (interval) strategy set, and so does each user i in \mathcal{F} if $\pi_i < \infty$.\footnote{When $P_i^{\min} = 0$, this bounded price restriction is not satisfied for utilities such as $u_i(\gamma; \pi) = \gamma^2$ with $\alpha \in [-1,0)$, since $\gamma = 0$ is not bounded as $p_i \to 0$. However, as noted above, we can set P_i^{\min} to some very small value without effecting the performance.} Each player’s payoff function is (trivially) supermodular in its own one-dimensional strategy space. The remaining increasing difference condition for the payoff functions does not hold with the original definition of strategies (\mathbf{p}, π) in G_{FPP}^2. For example, from (8)

$$\frac{\partial s_{ij}^{FV}}{\partial p_i \partial p_j} = -h_{ij} < 0, \forall j \neq i$$

e.g., a higher price leads the other users to decrease their powers. However, if we define $\pi_j = -\pi_j$ and consider an equivalent game where each user $j \in \mathcal{F}$ chooses π_j from the strategy set $[-\pi_j, 0]$, then

$$\frac{\partial s_{ij}^{FV}}{\partial p_i \partial p_j} = h_{ij} > 0, \forall j \neq i$$

e., s_{ij}^{FV} has increasing differences in the strategy pair (p_i, π_j) [or equivalently $(p_j, -\pi_j)$]. If all the users’ strategies can be redefined so that each player’s payoff satisfies the increasing differences property in the transformed strategies, then the transformed FPP game is supermodular.

Denote

$$CR_i(\gamma_i) = \frac{-\gamma_i u_i'(\gamma_i)}{u_i''(\gamma_i)}$$

and let $\gamma_i^{\min} = \min\{\gamma_i(\mathbf{p}) : p_i \in \mathcal{P}_i(\mathcal{V}_i)\}$ and $\gamma_i^{\max} = \max\{\gamma_i(\mathbf{p}) : p_i \in \mathcal{P}_i(\mathcal{V}_i)\}$. An increasing, twice continuously differentiable, and strictly concave utility function $u_i(\gamma_i)$ is defined to be the following:

- Type I if $CR_i(\gamma_i) \in [1, 2]$ for all $\gamma_i \in [\gamma_i^{\min}, \gamma_i^{\max}]$;
- Type II if $CR_i(\gamma_i) \in (0, 1]$ for all $\gamma_i \in (\gamma_i^{\min}, \gamma_i^{\max}]$.

The term $CR_i(\gamma_i)$ is called the coefficient of relative risk aversion in economics [18] and measures the relative concavity of $u_i(\gamma_i)$. Many common utility functions are either Type I or Type II, as shown in Table I.

The logarithmic utility function is both Type I and II. A Type I utility function is “more concave” than a Type II one. Namely, an increase in one user’s transmission power would induce the other users to increase their powers, i.e.,

$$\frac{\partial u_j(\gamma_j(\mathbf{p}))}{\partial p_i \partial p_j} \geq 0, \forall j \neq i.$$

A Type II utility would have the opposite effect, i.e.,

$$\frac{\partial u_j(\gamma_j(\mathbf{p}))}{\partial p_i \partial p_j} \leq 0, \forall j \neq i.$$

The strategy spaces must be redefined in different ways for these two types of utility functions to satisfy the requirements of a supermodular game.

Proposition 1: G_{FPP}^2 is supermodular in the transformed strategies $(p_1, p_2, -\pi_1, -\pi_2)$ if both users have Type I utility functions.

Proposition 2: G_{FPP}^2 is supermodular in the transformed strategies $(p_1, -p_2, \pi_1, -\pi_2)$ if both users have Type II utility functions.

The proofs of both propositions consist of checking the increasing differences conditions for each player’s payoff function. These results along with Theorem 1 enable us to characterize the convergence of the ADP algorithm. For example, if the two users have Type I utility functions (and $\pi_1, \pi_2 < \infty$), then \mathcal{F}_{ADP} is nonempty. In case of multiple fixed points, there exist two extreme ones (\mathbf{p}^L, π^L) and (\mathbf{p}^R, π^R), which are the smallest and largest fixed points in terms of strategies $(p_1, p_2, -\pi_1, -\pi_2)$. If users initialize with $(\mathbf{p}(0), \pi(0)) = (P_{\text{min}}, P_{\text{max}}, \pi_1, \pi_2)$ or $(P_{\text{min}}, P_{\text{max}}, 0, 0)$, the power and prices converge monotonically to (\mathbf{p}^L, π^L) or (\mathbf{p}^R, π^R), respectively. If users start from arbitrary initial power and prices, then the strategies will eventually lie in the space bounded by (\mathbf{p}^L, π^L) and (\mathbf{p}^R, π^R). Similar arguments can be made with Type II utility functions with a different strategy transformation. Convergence of the powers for both types of utilities is illustrated in Fig. 2.

2) M-User Networks: Proposition 1 can be easily generalized to a network with $M > 2$.
Corollary 1: For an M-user network if all users have Type I utilities, G_{FPP} is a supermodular in the transformed strategies $(\mathbf{p}, -\mathbf{u})$.

In this case, Theorem 1 can again be used to characterize the structure of \mathcal{F}^ADP, as well as the convergence of the ADP algorithm. On the other hand, it can be seen that the strategy redefinition used in Proposition 2, cannot be applied with $M > 2$ users so that the increasing differences property holds for every pair of users.

With logarithmic utility functions, it is shown in [6] that Problem (P1) is a strictly concave maximization problem over the transformed variables $y_i = \log P_i$. In this case, Problem (P1) has a unique optimal solution, which is the only point satisfying the KKT conditions. It follows from Lemma 2 and Lemma 3 that G_{FPP} will have a unique NE corresponding to this optimal solution and the ADP algorithm will converge to this point from any initial choice of prices and powers.\(^{12}\) With some minor additional conditions, the next proposition states that these properties generalize to other Type I utility functions.

The proof is given in Appendix A.

Proposition 3: In an M-user network, if for all $i \in \mathcal{M}$:

a) $I_i^\text{min} > 0$, and

b) $C_R^i(\gamma_i) \subseteq [a, b]$ for all $\gamma_i \in [\gamma_i^\text{min}, \gamma_i^\text{max}]$, where $[a, b]$ is a strict subset of $[1, 2]);

then Problem (P1) has a unique optimal solution, to which the ADP algorithm globally converges.

III. MULTICHANNEL NETWORKS

We now turn to a power-control problem in a multichannel network, where each user $i \in \mathcal{M}$ is able to transmit over a set of $K = \{1, \ldots, K\}$ orthogonal channels. A superscript k denotes that a quantity refers to the kth channel, e.g., $P^{(k)}_i$ is the ith user’s power on channel k. We denote the vector of powers across users for a particular channel k by $\mathbf{p}^k = \{P^{(k)}_i\}_{i=1}^M$ and the vector of power across channels for a particular user i by $\mathbf{p}_i = \{P^{(k)}_i\}_{k=1}^K$. Finally, $\mathbf{p} = \{\mathbf{p}^k\}_{k=1}^K$ will denote the power profile of all users in all channels. The same notation is used for other quantities such as SINR and prices. Each user i’s power allocation must lie in the set

$$\mathcal{P}^\text{MC}_i = \left\{ \mathbf{p}_i : \sum_{k \in \mathcal{K}} p_{ik}^k \leq P_{i,k}^{\text{max}}, \text{ and } p_{ik}^k \geq P_{i,k}^{\text{min}}, \forall k \in \mathcal{K} \right\}$$

where $P_{i,k}^{\text{max}}$ is a total power constraint. User i’s SINR on channel k is\(^{13}\)

$$\gamma_i^k = \frac{p_{ik}^k h_{ik}}{n_0 + \sum_{j \neq i} p_{jk}^j h_{jk}}.$$

In this section, we assume that each user has a “channel separable” utility, $u_i(\gamma_i^k(p)) = \sum_{k \in \mathcal{K}} u_k^i(\gamma_i^k(p_{ik}^k, p_{jk}^k))$, where u_k^i is an increasing and strictly concave function that represents the benefit user i receives from channel k. In other words, a user’s utility is the sum of utilities from each channel. For example, this is appropriate when the utility is linear in the rate a user receives, and the total rate is the sum of the rate on each channel.

Problem (P1) then becomes

$$\max_{\mathbf{p} \in \mathcal{P}^\text{MC}} \sum_{i \in \mathcal{M}} \sum_{k \in \mathcal{K}} u_k^i(\gamma_k^i(p_k^i)) \quad \text{(P2)}$$

Next, we discuss two generalizations of the ADP algorithm to this setting.

A. Multichannel ADP (MADP)

The MADP algorithm is a direct generalization of the ADP algorithm in which each user i announces a vector of prices π_i, one for each channel, and chooses a power vector $\mathbf{p}_i \in \mathcal{P}^\text{MC}_i$ to maximize the surplus function

$$s_k^i(\mathbf{p}_i; \mathbf{p}_{-i}, \pi_i) = u_i(\gamma_i(\mathbf{p}_i; \mathbf{p}_{-i})) - \sum_{k \in \mathcal{K}} p_{ik}^k \sum_{j \neq i} p_{jk}^j h_{jk}.$$

Specifically, for each user i, the MADP algorithm is exactly the same as the ADP algorithm except the scalars p_{ik} and π_{ik} are replaced by the corresponding vectors \mathbf{p}_i and π_i. The update functions \mathcal{W}_i and \mathcal{C}_i are also replaced by vector update rules $\mathcal{W}_i(\mathbf{p}_{-i}, \pi_i)$ and $\mathcal{C}_i(\mathbf{p}^k) = (C_i^k(\mathbf{p}^k))_{k=1}^K$, where

$$\mathcal{W}_i(\mathbf{p}_{-i}, \pi_i) = \arg \max_{\mathbf{p}_i \in \mathcal{P}^\text{MC}_i} s_k^i(\mathbf{p}_i; \mathbf{p}_{-i}, \pi_i)$$

and

$$C_i^k(\mathbf{p}^k) = \frac{\partial u_i^k(\gamma_i^k(\mathbf{p}^k; \mathbf{p}_{-i}^k))}{\partial p_{ik}^k(\gamma^k_i(\mathbf{p}^k; \mathbf{p}_{-i}^k))}.$$

with $I_i^k(\gamma_{-i}^k) = \sum_{j \neq i} p_{jk}^j h_{jk}$. Once again these updates may be asynchronous across users and among the price and power updates.

The single-channel fictitious game G_{FPP} can also be generalized to the multichannel setting so that each player’s best response corresponds to the update steps in the MADP algorithm. We denote this game by

$$G_{\text{MADP}} = \left\{ \mathcal{M} \mathcal{F} \mathcal{W} \cup \mathcal{M} \mathcal{F} \mathcal{C}, \{P\mathcal{M} \mathcal{F} \mathcal{W}, P\mathcal{M} \mathcal{F} \mathcal{C}\}, \{s\mathcal{M} \mathcal{F} \mathcal{W}, s\mathcal{M} \mathcal{F} \mathcal{C}\} \right\}.$$

Again, this game has two sets of players $\mathcal{M} \mathcal{F} \mathcal{W}$ and $\mathcal{M} \mathcal{F} \mathcal{C}$ both copies of \mathcal{M}. Each player in $\mathcal{M} \mathcal{F} \mathcal{W}$ chooses a power

\(^{12}\)Moreover, if each user $i \in \mathcal{M}$ starts from profile $(p_i(0), r_i(0)) = (P_{i,k}^{\text{min}}, 0)$ or $(P_{i,k}^{\text{max}}, 0)$, then their strategies will monotonically converge to this fixed point.

\(^{13}\)If there is any spreading on each channel as in multicarrier CDMA, the factor $1/B$ can be absorbed into the channel gains.
vector \(p_i \) from the strategy set \(\mathcal{P}_i^{\text{MC}} = \mathcal{P}_i^{\text{MC}} \) and receives a payoff of
\[
s_i^{\text{MC}}(p_i) = \pi_{i}^{\text{MC}}(p_i).
\]
Each player in \(\mathcal{M}^{\text{FC}} \) chooses a price vector \(\pi_i \) from the strategy set \(\mathcal{P}_i^{\text{FC}} = [0, \pi_i] \), where \(\pi_i = \sup_{p_i} \mathcal{C}_i(p) \), and receives a payoff of
\[
s_i^{\text{MC}}(\pi_i) = -\sum_{k \in K} (\pi_i^k - c_i^k(p^k))^2.
\]
Let \(\mathcal{F}^{\text{MADP}} \) denote the set of fixed points of the MADP algorithm; i.e., the values of \((p, \pi)\) such that for all \(i \),
\[
\mathcal{W}_i(p_{i\neg i}, \pi_{i\neg i}) = p_i \quad \text{and} \quad \mathcal{C}_i(p^k) = \pi_i.
\]
By the same arguments as in the single-channel case, we have the following.

Lemma 4: The following are equivalent: 1) A payoff profile \(c \) satisfies the KKT conditions of Problem (P2); 2) \((p^*, c^{\text{MC}}(p^*)) \in \mathcal{F}^{\text{MADP}} \); and 3) \((p^*, c^{\text{MC}}(p^*)) \) is a NE of \(\mathcal{G}^{\text{MFP}} \).

In a network with \(K = 2 \) channels, certain instances of \(\mathcal{G}^{\text{MFP}} \) can again be transformed into equivalent supermodular games. Notice that due to the total power constraint, the strategy set \(\mathcal{P}_i^{\text{MADP}} \) is not a sublattice. However, \(\mathcal{P}_i^{\text{MADP}} \) is a sublattice in transformed strategy \((p^1_i, p^2_i)\). Using this transformation, we can extend the results from Section II-B.

Corollary 2: In a network with \(K = 2 \) channels, \(\mathcal{G}^{\text{MFP}} \) is supermodular in the transformed strategies \((p^1, -p^2, -\pi^1, \pi^2)\) if for all \(j \) and \(k \), \(u_i^k(\gamma_i^k) \) is Type I.

Corollary 3: In a network with \(K = 2 \) channels and \(M = 2 \) users, \(\mathcal{G}^{\text{MFP}} \) is supermodular in the strategies \((p^1, -p^2, -\pi^1, \pi^2)\), if for all \(i \) and \(k \), \(u_i^k(\gamma_i^k) \) is Type II.

When \(\mathcal{G}^{\text{MFP}} \) is supermodular, the convergence of the MADP algorithm is again characterized by Theorem 1. Notice that Corollary 2 applies to a network with any number of users, while the strategy transformation in Corollary 3 does not generalize to \(M > 2 \). In both cases, these transformations do not extend to \(K > 2 \) channels.

B. Dual ADP (DADP) Algorithm

The DADP algorithm is another generalization of the ADP algorithm to multiple channels. This algorithm is based on relaxing each user’s total power constraint in Problem (P2) by introducing a power price \(\mu_i \) so that the objective function becomes \(\sum_{k \in K} \sum_{i \in M}(u_i^k(\gamma_i^k) - \mu_i^k) \). For a given \(\mu = (\mu_i)_{i \in \mathcal{I}} \), the resulting problem is separable across channels, and so can be decomposed into \(K \) subproblems, one for each channel \(k \), given by
\[
\text{max}_{p^k \in \mathcal{P}_i^k}\left\{ \sum_{i \in M}(u_i^k(\gamma_i^k(p^k)) - \mu_i^k) \right\}
\]
where \(\mathcal{P}_i = [p_i^{\text{min}}, p_i^{\text{max}}] \). A modified version of the (single-channel) ADP algorithm can be applied to the subproblem (P3).

14For example, \(a = (p_{\text{min}}, p_{\text{max}} - p_{\text{min}}) \in \mathcal{P}_i^{\text{MC}} \) and \(b = (p_{\text{max}} - p_{\text{min}}, p_{\text{max}} - p_{\text{min}}) \notin \mathcal{P}_i^{\text{MC}} \), assuming \(p_{\text{max}} > 2p_{\text{min}} \), which is necessary for \(\mathcal{P}_i^{\text{MC}} \) to contain for more than one point.

for each channel \(k \), where the price update, \(c_i^k(\mu_i) \) is the same as in the MADP algorithm, and the power update is modified to be
\[
\mathcal{W}_i^k(\mu_i) = \arg \max_{p_i^k \in P_i^k} \left(u_i^k(p_i^k, \pi_i^k) - p_i^k \left(\sum_{j \in M}(p_j^k) + \mu_i \right) \right)
\]
which includes both the cost due to interference and user \(i \)’s price power. For a given \(\mu \), any fixed point of this algorithm will satisfy the KKT conditions of subproblem (P3).

In the DADP algorithm, each user asynchronously updates its price and power for each channel using the above update rules. Additionally each user \(i \) periodically updates its own price power according to

\[
\mu_i(t) = \mu_i(t^-) + \kappa \left(\sum_{k \in K}(p_i^k(t^-) - F_i^k) \right)^+ \tag{10}
\]
where \(\kappa > 0 \) is a given constant and \([x]^+ = \max\{x, 0\} \).

In other words, if the current power allocation is less (greater) than \(p_i^{\text{max}} \), the user decreases (increases) its price power. The complete algorithm is given in Algorithm 2, where \(T_{i,k}^{\text{ADP}} \), and \(T_{i,k}^{\text{ADP}} \) are unbounded sets of positive time instances at which each user \(i \) updates \(p_i^k, \pi_i^k, \) and \(\mu_i, \) respectively. In this case, it can be seen that any fixed point of this algorithm will satisfy the KKT conditions of Problem (P2).

Algorithm 2 The DADP Algorithm

1. **INITIALIZE:** For each user \(i \), \(i \in \mathcal{I} \) chooses some power \(p_i(0) \in \mathcal{P}_i^{\text{MC}} \), interference price \(\pi_i(0) \geq 0 \) and power price \(\mu_i(0) \geq 0 \).

2. **POWER PRICE UPDATE:** At each \(t \in T_{i}^{\text{ADP}}, \) user \(i \) updates its power price according to
\[
\mu_i(t) = \mu_i(t^-) + \kappa \left(\sum_{k \in K}(p_i^k(t^-) - F_i^k) \right)^+.
\]

3. **POWER UPDATE:** At each \(t \in T_{i,k}^{\text{ADP}}, \) user \(i \) updates its power on carrier \(k \) according to
\[
p_i^k(t) = \mathcal{W}_i^k(\mu_i(t^-), \pi_i^k(t^-), \mu_i(t^-)).
\]

4. **INTERFERENCE PRICE UPDATE:** At each \(t \in T_{i,k}^{\text{ADP}}, \) user \(i \) updates its interference price on carrier \(k \) according to
\[
\pi_i^k(t) = \mathcal{C}_i^k(p_i^k(t^-)).
\]

We analyze the convergence of this algorithm under the following simplifying assumptions.

A1 **Synchronous updates:** The power prices are updated synchronously across all users.
A2) Separation of time-scales: Between any two updates of the power prices, the updates in steps 3 and 4 of the algorithm converge to a fixed point.

Assumption A1 is for analytical convenience and can likely be relaxed using techniques as in [19]. Steps 3 and 4 of the algorithm are implementing the modified version of the ADP algorithm on each channel. If every utility satisfies the conditions as in Proposition 3, these updates will converge to a fixed point for any fixed μ. However, a large number of updates may be required for convergence; hence, A2 implies that there are many of these updates between any two power price updates. Numerical results in Section IV show that convergence can still be obtained when this assumption is dropped.

Theorem 2: In a network with M users and K channels, if for all $i \in \mathcal{M}$ and $k \in \mathcal{K}$, P_i^min and $u_i^k(\gamma_i^k)$ satisfy the conditions (a) and (b) in Proposition 3; then under assumptions A1 and A2, for small enough step size κ the DADP algorithm globally converges to the unique optimal solution to Problem (P2).

Under these assumptions, it follows from Proposition 3 that for any μ there is only one fixed-point, $\mu^k = (\mu^k_i)_{i=1}^M$, for each channel k which corresponds to the optimal solution of subproblem (P3) for that channel. This fixed-point specifies the value of the following dual function for Problem (P2)

$$D(\mu) = \sum_{k \in \mathcal{K}} G^k(\mu) + \sum_{i \in \mathcal{M}} \mu_i P_i^\text{tx}\text{,}$$

(11)

where $G^k(\mu) = \sum_{i \in \mathcal{M}} (u_i^k(\gamma_i^k(\mu^k_i)) - \mu_i P_i^\text{tx}^k(\mu^k_i))$. In this setting, the power price update can be viewed as a distributed gradient projection algorithm [15] for solving the dual problem

$$\min_{\mu \succ 0} D(\mu)\text{.}$$

The proof of this theorem, given in Appendix B, shows that: a) this algorithm converges to some μ^* for small enough step-size κ and b) there is no duality gap and so μ^k is the optimal solution to Problem (P2). The proof of b) uses a similar argument as in the proof of Proposition 3; the proof of a) follows a similar argument as in [2], which requires showing that the gradient of the dual function is Lipschitz continuous. This is complicated here since the dual problem is not separable across users in each channel due to interference.

IV. Simulation Results

We provide some simulation results to illustrate the performance of the ADP and DADP algorithms. We simulate a network contained in a 10×10 m square area. Transmitters are randomly placed in this area according to a uniform distribution, and the corresponding receiver is randomly placed within 6×6 m square centered around the transmitter.

First, we consider a single-channel network with $M = 10$ users each with utility $u_i = \log(\gamma_i)$. The channel gains $h_{ij} = d_{ij}^{-\alpha_{ij}}$, $P_i^\text{tx} = 40$ dB, and $B = 128$. Fig. 3 shows the convergence of the powers and prices for each user under the ADP algorithm for a typical realization, starting from random initializations. Also, for comparison we show the convergence of these quantities using a gradient-based algorithm as in [6] with a step-size of 0.01. Both algorithms converge to the optimal power allocation, but the ADP algorithm converges much faster; in all the cases we have simulated, the ADP algorithm converges about ten times faster than the gradient-based algorithm (if the latter converges). The ADP algorithm, by adapting power according to the best response updates, is essentially using an “adaptive step-size” algorithm: users adapt the power in “larger” step-sizes when they are far away from the optimal solution, and use finer steps when close to the optimal.

Next, we examine the convergence of DADP algorithm in a multichannel network with $M = 50$ users and $K = 16$ channels. The other parameters are the same as in the single-channel case, except here $h^k_{ij} = d_{ij}^{-\alpha_{ij}}\sigma_{ij}^k$, where σ_{ij}^k is an unit mean exponential random variable that models

In our experiments, a larger step-size than 0.01 would often not converge.
frequency selective fading across channels. Here, we simulate a version of the algorithm with step-size $\kappa = 0.05$ starting from a random initialization. All users synchronously update their power prices; the time between each update is referred to as a dual iteration. During each dual iteration, the users also synchronously perform both steps 3) and 4), which we refer to as a primal update. In Theorem 2, we assumed that there were arbitrarily many primal updates during each dual iteration. Here, we investigate the case where only a small number of primal updates are used. Fig. 4 shows the relative error between the current utility and the optimal value as a function of the number of dual iterations, with a maximum of 1, 3, 5, and 7 primal updates per iteration. Each point is averaged over 100 random topology realization. Even with only one primal update per iteration, the relative error quickly decreases. Fig. 5 shows relative error as a function of the total number of primal updates; in this case, the number of updates per iteration appears to have little effect on the average performance.

V. CONCLUSION

We have presented distributed power control algorithms for both single-channel and multichannel wireless networks. In these algorithms, users announce prices to reflect their sensitivities to the current interference levels, and then adjust their power to maximize their surplus. In certain cases, we are able to characterize the convergence of these algorithms and show that they achieve an optimal power allocation. Some other desirable features of these algorithms are that they can be asynchronously implemented, they require only limited knowledge of channel gains by each user, and each user only announces a single price per channel. Also, our numerical results show that the algorithms converge quickly, which also limits the required overhead.

Our analysis has been based on relating the algorithms to fictitious noncooperative games. These games are introduced as a proof technique, whereas the actual users in the network are assumed to be cooperative, i.e., they correctly follow the algorithms. With noncooperative users, developing incentive compatible algorithms for distributed power control requires further work. A challenge is that in addition to providing incentives for users to announce the correct price signals, incentives must also be provided for information exchange needed for channel estimation. For example, if cross-channel gains are estimated via beacons from other nodes, then the users must have incentives for transmitting their beacons at the correct power level.

Finally, we have assumed a static model, in which the communicating pairs and the channel conditions are fixed. An interesting future direction is to consider dynamic environments, in which the network topology and channels may change with time, and source traffic may vary randomly.

APPENDIX A

A. Proof of Proposition 3

As in [6], we use a logarithmic change of variables. Specifically, we show that in the transformed variables $y_i = \log p_i$, Problem (P1) becomes the optimization of a strictly concave objective over a compact, convex set. It follows that Problem (P1) has a unique global optimum, which is the only solution to the KKT conditions. Furthermore, the solutions to the KKT conditions in the variables y have a one-to-one correspondence to solutions in the original variables p. It follows that there is only one solution to the KKT conditions in the original variables, and hence by Lemma 2, \mathcal{F}_{ADP} is a singleton set containing only the global optimum. Therefore, the ADP algorithm globally converges to this point.

All that remains is to show that Problem (P1) has the desired properties in the variables y. In the transformed variables, the constraint set becomes $\mathcal{Y} = \prod_{i \in \mathcal{M}} [\log P_i^{\min}, \log P_i^{\max}]$, which is clearly compact and convex. To show that the objective is strictly concave, we show that its Hessian is negative definite for all $y \in \mathcal{Y}$.

Let $u_{\text{col}}(y)$ denote the objective to Problem (P1) in terms of the transformed variables. The Hessian matrix, $H(y) = \nabla_{yy} u_{\text{col}}(y)$ consists of diagonal elements

$$H_{ii}(y) = \gamma_i (u_i' \gamma_i + u_i') + \sum_{j \neq i} \gamma_j^2 (A_{ij})^2 [u_j' \gamma_j^2 + 2u_j' \gamma_i - u_j A_{ij}]$$

for all $i \in \mathcal{M}$, and off-diagonal elements

$$H_{il}(y) = -\gamma_i^2 A_{il} (u_i' \gamma_i + u_i') - \gamma_i^2 A_{il} (u_i' \gamma_i + u_i') + \sum_{j \neq i, l} \gamma_j^2 (A_{ij} A_{lk}) (u_j' \gamma_i + 2u_j')$$

for all $l \neq i$. Here, $u_i' = \partial u_i(\gamma_i)/\partial \gamma_i$, $u_i'' = \partial^2 u_i(\gamma_i)/\partial \gamma_i^2$, and $A_{jk} = h_{jk} \exp(y_j)/h_{jk} \exp(y_k)$. Since all users have
Type I utilities, \(u_i' y_i + u_i' y_i + 2u_i' \geq 0 \), for all \(i \). It follows that \(H_{ii}(y) \geq 0 \), and

\[
H_{ii}(y) \leq \gamma_i (u_i' y_i + u_i' y_i) + \sum_{j \neq i} \gamma_j^2 (A_{ij})^2 = \sum_{j \neq i} \gamma_j^2 (A_{ij})^2 \leq 0,
\]

(12)

Using these relations, it can be shown that for all \(i \in \mathcal{M} \) and all \(y \in \mathcal{Y} \),

\[
|H_{ii}(y)| - \sum_{k \neq i} |H_{ii}(y)| \geq \varepsilon_i
\]

where

\[
\varepsilon_i = u_i' (\gamma_i' y_i) - \sum_{j \neq i} \gamma_j' (A_{ij})^2 y_i (y_i - y_i) \frac{\nabla' \nabla_{\text{max}}}{\nabla' \nabla_{\text{max}}} (a - 1) + \sum_{j \neq i} \gamma_j' (A_{ij})^2 y_i (y_i - y_i) \frac{\nabla' \nabla_{\text{max}}}{\nabla' \nabla_{\text{max}}} (2 - b).
\]

Here, \(a \) and \(b \) are the constants in the proposition. By assumption, \((a - 1) \geq 0 \) and \((2 - b) \geq 0 \), and at least one of these inequalities is strict. It follows that \(\varepsilon_i > 0 \), i.e., \(H(y) \) is diagonal dominant. From Gersgorin’s Theorem [20, p. 344], the eigenvalues \(\{\lambda_j\}_{i=1}^M \) of \(H(y) \) satisfy \(\lambda_j \leq H_{ii} \leq \sum_{j \neq i} |H_{ii}| \) for all \(i \). Combining this with the diagonal dominance, we have \(\lambda_j \leq -\max \varepsilon_i < 0 \) for all \(j \). Since \(H(y) \) is real and symmetric and has all negative eigenvalues, it must be negative definite as desired.\(^{16}\)

B. Proof of Theorem 2

Consider the variable transformation \(y_i' = \log(y_i') \) for all \(i \) and \(k \). By a similar argument as in the proof of Prop. 3, it follows that, under the conditions of Prop. 3, Problem (P2) in the transformed variables is the optimization of a strictly concave objective over a bounded, convex set. Also, between each power price update, the DADP algorithm will converge to the unique fixed point with power allocation \(\mathbf{p}(\mu) \), which maximizes the Lagrangian

\[
L(y, \mu) = \sum_{k \in K} \sum_{i \in M} (u_i' (\gamma_i' y_i') - \mu_i \exp(y_i')) + \sum_{i \in M} \mu_i P_{\text{max}}^i
\]

over all \(y \) for which \(\exp(y_i') \in \mathcal{P}_i \) for all \(i \) and \(k \). This specifies the dual function \(\mathcal{D}(\mu) \) in (11). Since the primal is strictly concave in the transformed variables, there will be no duality gap between Problem (P2) and the dual problem \(\mathcal{D}(\mu^*) \) will be the optimal solution to Problem (P2). Also, since the primal is strictly concave, \(\mathcal{D}(\mu) \) is continuously differentiable everywhere [15, Prop. 6.1.1], and \(\partial \mathcal{D}(\mu)/\partial \mu_i = \mu_i P_{\text{max}}^i - \sum_{k \in K} \gamma_k^i (\mu_k) \), i.e., (10) is indeed a gradient projection update. All that remains to be shown is that (10) converges to an optimal dual value \(\mu^* \).

Let \(H = \nabla^2_{\mu_\mu} L(y, \mu) \) be the Hessian matrix of \(L(y, \mu) \). Since \(L(y, \mu) \) is separable across carriers, \(H \) will be a block diagonal matrix (\(\text{diag}(H^1, \ldots, H^K) \)), where for each \(k \), \(H^k = [\partial^2 L(y, \mu)/\partial \mu_k \partial \mu_k] \). From the same argument as in the Proof of Prop. 3, each matrix \(H^k \) will be negative definite and its eigenvalues \(\{\lambda_j^k\}_{j=1}^M \) will satisfy \(\max_{j \in \mathcal{M}} \lambda_j^k < -\varepsilon_k \equiv -\min_{i \in \mathcal{M}} \varepsilon_i \), where

\[
\varepsilon_i^k = u_i' (\gamma_i' y_i') \frac{\nabla' \nabla_{\text{max}}}{\nabla' \nabla_{\text{max}}} (a - 1) + \sum_{j \neq i} \gamma_j' (A_{ij})^2 \frac{\nabla' \nabla_{\text{max}}}{\nabla' \nabla_{\text{max}}} (2 - b).
\]

Therefore, \(H \) will be negative definite, and \(\nabla^2_{\mu_\mu} \mathcal{D}(\mu) = -\nabla g(y(\mu)) H^{-1} \nabla g(y(\mu)) \), where \(\nabla g(y) \) is the gradient matrix of \(g(y) = (g_1(y), \ldots, g_M(y)) \), with \(g_i(y) = \sum_{k \in K} \gamma_k^i \mu_k - P_{\text{max}}^i \) [15, Sec. 6.1]. Note that \(g(y(\mu)) = [A_{\mu} \cdots A_{\mu}]^T y \), where \(A_{\mu}^k = \text{diag}(e^{\mu_k \gamma_k^i}(y), \ldots, e^{\mu_k \gamma_k^i}(y)) \). And so, \(\nabla D(\mu) = -\sum_{k \in K} A_{\mu}^k (H^k)^{-1} A_{\mu}^k \). We use this to prove that \(\nabla D(\mu) \) is Lipschitz continuous. Let \(||X||_2 \) denote the Euclidean norm of matrix \(X \). Given any \(\mu \) and \(\mu' \), using Taylor’s Theorem there exists some \(\alpha \in [0, 1] \) such that \(\mu'' = \alpha \mu + (1 - \alpha) \mu' \) satisfies

\[
||\nabla D(\mu) - \nabla D(\mu')||_2 = ||\nabla^2 D(\mu'')(\mu')||_2 \leq ||\nabla^2 D(\mu'')(\mu'')||_2 \leq \sum_{k \in K} ||A_{\mu}^k||_2 \left((H^k)^{-1} \right) \leq \sum_{k \in K} \left(\max_{i \in \mathcal{M}} \gamma_k^i \right)^2 \sum_{i \in \mathcal{M}} \left(\frac{1}{e_k} \right) \leq J.
\]

These relations follow because the Euclidean norm of a real, symmetric matrix is equal to its spectral radius [19, Prop. A.24], and the Euclidean norm of the inverse of a symmetric, nonsingular matrix is equal to the reciprocal of the smallest magnitude of an eigenvalue of the matrix [19, Prop. A.25]. Together (15) with (14) imply that \(\nabla D(\mu) \) is Lipschitz continuous.

By a similar argument to the above, it can be shown that for small enough \(\alpha \), \(\nabla^2 D(\mu) - \alpha I \) is nonnegative definite for all \(\mu \). It follows that \(\nabla D(\mu) \) is strongly convex [19, Prop. A.41]. Also, since Problem (P2) has a finite maximum, the objective of Problem D is lower bounded. Combining these observations with the Lipschitz condition implies that there is a unique dual optimum \(\mu^* \), and if \(0 < \kappa < 2 / J \) the gradient projection algorithm converges to \(\mu^* \) geometrically [19, p. 215].
REFERENCES

[23] Jianwei Huang (S’01–M’06) received the B.E. degree in radio engineering from Southeast University, Nanjing, China, in 2000, and the M.S. and Ph.D. degrees in electrical and computer engineering from Northwestern University, Evanston, IL, in 2003 and 2005, respectively. He is currently a Postdoctoral Research Associate in the Department of Electrical Engineering, Princeton University, Princeton, NJ. In 2004 and 2005, he worked in the Mathematics of Communication Networks Group at Motorola, Arlington Heights, IL, as a Software Engineer. His current research interests lie in the areas of wireless and wiredline communications networks, with emphases on resource allocation, network pricing, dynamic spectrum sharing, mobile ad hoc and sensor networks, stochastic and nonconvex optimizations.

Dr. Huang is the recipient of a 2001 Walter P. Murphy Fellowship at Northwestern University, and a 1999 Chinese National Excellent Student Award.

Randall A. Berry (S’93–M’00) received the B.S. degree in electrical engineering from the University of Missouri, Rolla, in 1993, and the M.S. and Ph.D. degrees in electrical engineering and computer science from the Massachusetts Institute of Technology (MIT), Cambridge, in 1996 and 2000, respectively.

He is currently an Assistant Professor in the Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL. In 1998, he was on the technical staff of the Advanced Networks Group, Lincoln Laboratory, MIT. His primary research interests include wireless communication, data networks, and information theory.

Dr. Berry is the recipient of a 2003 National Science Foundation (NSF) CAREER Award.

Michael L. Honig (S’80–M’81–SM’92–F’97) received the B.S. degree in electrical engineering from Stanford University, Stanford, CA, in 1977, and the M.S. and Ph.D. degrees in electrical engineering from the University of California, Berkeley, in 1978 and 1981, respectively.

He subsequently joined Bell Laboratories, Holmdel, NJ, where he worked on local area networks and voiceband data transmission. In 1983, he joined the Systems Principles Research Division at Bellcore, where he worked on digital subscriber lines and wireless communications. Since the Fall 1994, he has been with Northwestern University, Evanston, IL, where he is a Professor in the Electrical Engineering and Computer Science Department. He has held Visiting Scholar positions at the Naval Research Laboratory, San Diego, CA, the University of California, Berkeley, the University of Sydney, and Princeton University.

He was a Guest Editor for the European Transactions on Telecommunications and Wireless Personal Communications.

Dr. Honig is the corecipient of the 2002 IEEE Communications Society and Information Theory Society Joint Paper Award. He has served as an Editor for the IEEE TRANSACTIONS ON INFORMATION THEORY (1998–2000) and the IEEE TRANSACTIONS ON COMMUNICATIONS (1990–1995). He has also served as a Member of the Digital Signal Processing Technical Committee for the IEEE Signal Processing Society, and as a Member of the Board of Governors for the Information Theory Society (1997–2002).