
Using Semi-Joins to Solve Relational Queries

pHILIP A. BERNSTEIN AND D A H - M I N G W. CHIU

Harvard Universitr, Cambridge, Massachusetts

ABSTRACT. The semi-join is a relational algebraic operation that selects a set of tuples in one relation that
match one or more tuples of another relation on the joining domains. Semi-joins have been used as a basic
ingredient in query processing strategies for a number of hardware and software database systems.
However, not all queries can be solved entirely using semi-joins. In this paper the exact class of relational
queries that can be solved using semi-joins is shown. It is also shown that queries outside of this class may
not even be partially solvable using "short" semi-join programs. In addition, a linear-time membership
test for this class is presented.

KEY WORDS AND PHRASES: semi-join, relational database, relational query processing
cR CATEGORIES: 3.74, 4.33, 5.25

i. Introduction

The uti l i ty o f very high level da t abase que ry l anguages based on the re la t iona l
database model , such as Q U E L [8] and S E Q U E L [4], is p red ica t ed on the abi l i ty to
implement these l anguages efficiently. M a n y schemes for in te rp re t ing re la t iona l
query l anguages in cent ra l ized systems, d i s t r ibu ted systems, and on specia l pa ra l l e l
hardware have been devised (e.g., [9, 10, 12-14]). These schemes are essent ia l ly
strategies for execut ing a c o m b i n a t i o n o f pro jec t ion , restr ict ion, a n d j o i n opera to r s
from re la t iona l a lgebra to answer the given que ry [7]. Two o f these methods , the
dis t r ibuted re t r ieva l a lgo r i thm for SDD-1 [14] and the R A P da t abase ma c h ine [9],
use a special o p e r a t o r that is a composed j o i n and project ion. The p roper t i e s o f this
operator , which we call the semi-join and deno te by 0<, are the subject o f this paper .

The semi- jo in o p e r a t o r takes the j o in o f two relat ions, R and S, and then projects
back out on the d o m a i n s o f re la t ion R. ~ Tha t is, it retr ieves those tuples in R that j o i n
with some tuple in S. Al te rna t ive ly , one can th ink o f semi- jo in as a genera l i za t ion o f
restriction; it restr icts R by values that a p p e a r in S ' s j o in domain .

The value o f the semi- jo in ope ra to r is that it can reduce the a m o u n t o f effort
required to do a la te r expensive jo in , while the semi- jo in i tself is of ten qui te cheap.

t The join_ of relations R(A, B) and S(B, C) on domain B is the set of tuples {(a, b, c) E A x B x
Cl(a, b) ~ R and (b, c) E S}. The projection of relation T(A, B, C) on domains A and B is the set
{(a, b) ~ A x BI3c E C((a, b, c) E T)}, that is, the join of R and S projected back on the domains
of R.

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
This work was supported in part by the National Science Foundation under Grants MCS°77-05314 and
ENG-76-11824, by the Joint Services Program under Contract N00014-75-C-0648, and by the Defense
Advanced Research Projects Agency of the Department of Defense, monitored by the Naval Electronic
Systems Command under Contract N0039-77-C-0074.
Authors" addresses: P. A. Bernstein, Aiken Computation Laboratory, Harvard University, Cambridge,
MA 02138; D. W. Chiu, Pierce Hall, Harvard University, Cambridge, MA 02138.

© 1981 ACM 0004-5411/81/0100-0025 $00.75

Journal of the Associanon for Computing Machinery. Vol. 28. No. I. January 1981. pp. 25-4.0.

26 P. A. BERNSTEIN AND D. W. CHIU

For example, suppose a query requires that the join of R and S be constructed.
Instead of computing the join directly, one can first reduce the size of R and S by
semi-joins (i.e., R t~ S and S t~ R) and then construct the join of the resulting
relations. No information is lost by the preliminary semi-joins. For the semi-joins to
be performed, only the projection of the joining columns need be sent. If the size of
these projections is small relative to the amount by which R and S are reduced, then
the preliminary semi-joins will be profitable.

To reduce the cost of processing joins, semi-joins play a pivotal role in the query
processing algorithm of SDD-1, a prototype distributed database system. The prin-
cipal problem in evaluating a relational query on a distributed database is that two
relations that must be joined may reside at different sites. For the join to be
performed, one relation must be shipped to the site of the other. Communication is
the dominant cost in a distributed database system, so minimizing the amount of
data to be shipped is of prime importance [11]. Since the join must eventually be
performed, one can only hope to limit communication, not eliminate it. One tactic
for limiting communication is to perform first as much local processing of the query
as possible; for example, all restrictions should be applied early. Another tactic is to
use semi-joins. To join R and S at different sites, one can ship the projection of R on
its joining column to S's site and use a semi-join to reduce S by R before shipping
S to R's site. This will be a profitable tactic whenever the projection of R on its
joining column is smaller than the amount by which S is reduced by the semi-join.
The SDD-I algorithm uses a heuristic hill-climbing strategy that tries to apply as
many such semi-joins as are profitable.

Semi-joins are also important for the RAP machine, a hardware device tailored
for relational query processing. RAP is not capable of performing joins itself and
must therefore ship data to a conventional CPU to perform them. To reduce the
amount of data shipped, the RAP designers have provided a hardware semi-join
instruction that they recommend using to partially evaluate queries before performing
joins on an external processor.

Since the database is of finite size, there are limits to how much the database can
be reduced relative to a given query using semi-joins. Knowing which sequences of
semi-joins can fully reduce the size of the database is important in selecting optimal
retrieval strategies for RAP, SDD-1, and other systems as well. In this paper we
examine the question of which semi-join sequences are efficacious. We show that
relational calculus queries are naturally partitioned into two broad classes: One class
can be fully evaluated using a small number of semi-joins; the other class can be
neither fully evaluated using semi-joins alone nor easily reduced using a small
number of semi-joins. For the one class, semi-join solution strategies are well
behaved; for the other they can be dismally poor. We proceed formally by developing
some basic properties of semi-joins and then showing the behavior of semi-joins with
respect-to these two classes of queries.

2. Relations and Semi-Joins

A relation is a subset of the Cartesian product of its domains. We distinguish between
relation names, denoted by {RI, Re }, and their corresponding relations (i.e., sets
of tuples), denoted by {$1, $2 }. A database D is defined to be an ordered set of
relation names R. A database state is, in turn, a pair (S, env), where S is an ordered
set of relations and env:R ~ S. For notational convenience we will assume that
R = (R1 Rn), S = ($1 S~), and env(Ri) = Si for i = 1 n.

Note that we use the standard mathematical definition of a relation as a fixed

F
r.~ Using Semi-Joins to Solve Relational Queries 27

i subset of the Cartesian product of its domains. This differs slightly from some uses
ii in the database literature where relation means a "time-varying subset of the
' Cartesian product of its domains" that changes as operations are applied (e.g., [6]).
:: Thus, in our model an operation maps one database state into another. In practice,

of course, only a single copy of the database is maintained. Update operations modify
the copy; retrieval operations produce a temporary database that is the subset of the
real database that the query requested. We adopt our model for mathematical
simplicity only and do not suggest that entire databases be created and destroyed as
a consequence of each operation.

Given two database states S' and S", we define S' tO S" = {S" tO S[' I i = 1 n}
to be their componentwise union. Also, we define a partial order ~ on database
states. We write S' _< S" if S[C_ S " , i = 1 n. Similarly, S' < S" if S[~ S[',
i = l , . . . , n .

We denote the semi-join operation by the symbol t,<. The semi-join of Ri on
domain A with Rj on domain B is defined as a function from database states
into database states: (Ri AtKB Rj) (S) = S', where S'k = Sk for k # i and S" =
{t, E S,13tj ~ Sj such that ti.A = tj.B}. The relational calculus notation t .X means
"the value of domain X o f t u p l e t." When there is only one semi-join on Ri by Rj, we
drop domain references and simply write Ri t~ Rj.

We limit ourselves to semi-joins involving single domains. Our justification is
practicality. To perform a semi-join of, say, Ri on domains A and B with R/ on
domains C and D requires projecting Rj on a pair of domains C and D. The size of
such a projection will generally be quite large and therefore the benefit of the semi-
join is unlikely to exceed its cost. For this reason, multidomain semi-joins are ignored
in SDD-I [14] and RAP [9]. Still, we do allow multidomain semi-joins in a limited
context. If a pair of domains in a relation are always treated as a single composite
domain (i.e., neither domain ever participates in a semi-join by itself), then the
composite domain can be considered to be atomic and all of our results follow
correctly.

LEMMA I. I f $1 = S'~ U S~', then

(a) <R2 ~ R,)((S, , S2}) = (R2 ~< R ,) ({ S ' ~ , S~}) U (R~ ~ R,)({ST, S2});
= R ' R " (b) (R, v< R2~({S,, S~}) (R, ~x ~)({S,, S~}) U (R, ~ ~;,((S,, S2}).

PROOF. Follows directly from the definition of ~. []

For evaluating a relational database query, in general many semi-joins are re-
quired. Hence we define a semi-join program to be a sequence of semi-joins, denoted
o = (R,, v< R~., R~.~m_, t~ Rg~m), whose meaning is simply the composition of the
semi-joins, o = (Rg, ~ Rz 2) (R~2~_, tx R~,,). The following lemma shows that
semi-join programs obey a simple monotonicity property.

LEMMA 2. I f S ' <-- S", then o(S') _< a(S").

PROOF. We proceed by induction on the length of o. The basis step goes as
follows: Suppose o = (R2 v< R1). Then,

o({S~', S~'}) = o({S'~, S~'}) U o({S~' - S'~, S~'}) (by Lemma l(a))
= o ((s ~ , s~}) u o ({ S ; , s~" - s~})

U o({S[' - S~, S~'}) (by Lemma l(b))

Thus o({S'h S '}) _< o({S[', S~'}). Since all relations other than $2 remain unchanged
by o, o(S') _< o(S").

The induction step follows similarly. []

28 v . A . BERNSTEIN AND D. W. CHIu

3. Queries

We are interested in applying semi-joins to evaluate relational database queries. We
will express our queries in a notation similar to that of relational calculus [7].
Formally, an equi-join qualification q is a conjunction of clauses of the form
(R~.X = Rj. Y), where X and Y are domains of Ri and Ri, respectively. Each equi-join
qualification q defines an equi-join query Q that produces a relation from each
database state as follows:

Q (S) = { (t , &) e~ sa x . . . x S . l q (t , t .) } .

(Since each li is a tuple, (tl t,,) is a tuple of tuples.) In words, Q(S) is the subset
of $1 x . . . x Sn that satisfies q. We say that two queries are equivalent, denoted
Q1 -= Q2, if Qa(S) = Q2(S) for all S (this is called "strong equivalence" in [2]).

Notice that equi-join queries do not include one-relation clauses of the form
(Ri.X = constant), nor do they include target lists. One-relation clauses were excluded
because they are generally evaluated using special techniques before semi-joins are
applied. For example, in SDD-I one-relation clauses correspond to local operations
that do not require semi-joins [14]; in RAP one-relation clauses are evaluated in one
rotational delay using the MARK operation [9]. In any case, by creating a relation
containing a single constant tuple, these one-relation clauses can be considered in
equi-join queries.

Target lists were excluded because the semi-join does not have the power to
"project out" certain domains. A single projection operation applied to the result of
an equi-join query is always sufficient to obtain the full power of target lists. 2

Our definition of query does allow multidomain joins between two relations by
conjoining two clauses. For example, to join Ri on domains W and X with Rj on
domains Y and Z, the clauses ((R i . 1¥ = R j . Y) A (R i . X = Rj.Z)) are used.

We also allow one-relation joins of the form (Ri.A = Ri.B). Like simple one-
variable clauses, these one-relation joins are also generally evaluated using special
techniques before semi-joins are applied. However, syntactically eliminating them
from our class of queries is futile, since a one-relation join can be in the closure of q
even if it is not in q itself. For example, (Ri.A = Ri.C) and (Rj.C = Ri.B) implies
(Ri.A = Ri.B). So, although we will want to think of these one-relation joins as
executing "for free," we still need them in our definition of query. More will be said
on this issue in Section 4.

It will occasionally be convenient to examine the components of Q(S) that come
from each of S~ Sn. We introduce projection for this purpose. The notation
Q (S) [R i] denotes (t i E Si[(ta ti tn) E Q(S)). Similarly, S[Ri] denotes Si.

4. Solving Queries by Semi-Join Reduction

4.1 REDUCTXONS. The main purpose of semi-joins is to reduce the number of
tuples involved in the evaluation of a query. Let Q be a query and S be a database
state. We define REDUCTIONS(Q, S) = (S ' [S ' _< S and Q(S') = Q(S)}. A full
reduction S* of S with respect to Q is an element of REDUCTIONS(Q, S) such
that there is no S' in REDUCTIONS(Q, S) with S' < S*. We denote S*[Ri] by Si*.

LEMMA 3. For each Q and S there exists a unique S* and S* = (Q(S)[R1]
Q(S)[R.]}.

PROOF. Let Sred = {Q(S)[R~] Q(S)[R.]} and let S* be a full reduction. It

The lack of negation, an existential quantifier, and tuple variables imply that equi-join queries are not
"relationally complete" in the sense of [7].

Using Semi-Joins to Solve Relational Queries

s = {S,, $2, $3}.
s~(,4 B) s~(c D) S3(E 19

0 i 1 2 2 3
3 4 4 5 5 0

Let Q be a query with qualification q.

q = (R t .B = R2.C) A (R2.D = Ra.E) A (Ra.F = R1.A).

s* = {o, c), o).
Yet for each join clause, the corresponding semi-join does not reduce at all.

Fro. 1. An example where S* is not obtainable by semi-joins.

29

R1
I V

R2 R1 R 2 R 1 R2

R 3 R3 R 3
(c) (b) (c)

FIo. 2. (a) Query graph G#, for query Q~ defined by qualification q~ = (Rt .A = R.,.B) A

(R.,.B = R:~.C). (b) Query graph Go~ for query Q2 defined by qualification q.~ = (R~.A = R~.B) A

(R.,.B = R:~.C) A (R:~.C = R~.A). (c) Query graph Go:, for query Q:j defined by qualification q:~ =
(Ra.A = R2.B) A (R2.C = Ra.D) A (R:~.E = Rt .F) .

must be that Sred -- S*, for otherwise Q(S*) ~ Q(S). Since this holds for any full
reduction S*, it follows that Sred is the unique full reduction. []

The principal issue of this paper is discovering when semi-join programs can
completely resolve an equi-join query. This is equivalent to asking when a semi-join
program can obtain S*. Unfortunately, S* cannot always be obtained by semi-joins.
For example, consider S and Q in Figure 1. In this case, semi-joins cannot reduce S
at all with respect to Q, yet S* = (O, ~, ~}.

We now show a class of queries for which S* can always be obtained by semi-
joins. Later we will show that for any query outside this class, semi-join programs
cannot produce S* in general.

4.2 TREE QUERIES. Given a query Q with qualification q we define its correspond-
ing query graph GQ(VO, EQ) as (see Figure 2):

Vo = set of all relation names referenced by q;
EQ = {(i, j) li ~ j and some clause of q references both Ri and Rj }.

Since we allow more than one join between two relations, Eo is a multiset (i.e., may
contain duplicates), so GQ is a multigraph.

We partition the set of all equi-join queries into two classes. We call a query a tree
• query either if its query graph is a tree or if it is equivalent to a query whose query
graph is a tree. We denote the set of all tree queries by TQ and all other equi-join
queries by CQ (for cyclic queries).

Consider the set of queries in Figure 2. Since Go, is a tree, Q1 E TQ. Although
Go. has a cycle, Q1 - Q2, so that Q2 E TQ also. The cycle in Go3 is inherent; Qa is not
equivalent to any query whose graph is a tree, so Qa E CQ. A simple efficient
algorithm that tests whether a query is in TQ appears in Section 5.

In the sequel we will only consider equi-join queries whose query graphs are
connected. A query whose query graph is disconnected produces a result that is the

30 P. A. BERNSTEIN AND D. W. CHIU

Let Q be a query with qualification q. ~

1 q = (RI.A = R~.B) A (RI.C ~- Ra.D) A (R2.E = R4.F)
A (R3.G = Rs.H) A (Ra.J = Re.K).

R 1 ~

!
R2 }

R4t Rsd bR 6 ~,

OQ.I = (R2 ~< R4, R3 D< Rs, R3 Ix: R6, R1 ~< R~, R1 ~< Ra).

FIG. 3. An example reducing semi-join program,

Cartesian product o f database substates produced by each connected component.
That is, since these connected components are not joined in any way, there can be no
interaction between them with respect to semi-joins. Hence, there is no loss of
generality in treating the components separately.

We can now state our main result.

THEOREM 1. For any Q ~ TQ, there is a semi-join program o O such that f o r all S,
oo(S) = S* and] ool = 2n - 2, where n is the number o f relations referenced by Q.

, Furthermore, f o r each i, 1 <_ i <_ n, Si* can be obtained f r o m S in n - I semi-joins.

Theorem 1 says that there is always a short semi-join program that produces S*
for Q E TQ. To prove Theorem 1, we construct a semi-join program that obtains Si*
from S.

We begin by briefly reconsidering one-relation clauses of the form (R, .A = Ri.B).
These clauses, we will assume, are applied to the database state before any semi-joins
are executed. They a r e assumed to be free and do not appear in the semi-join
programs that we construct to solve Q.

Let Q E TQ be a query whose graph is a tree, and let i E V o be a relation
referenced by Q.z We use Go as a control structure to guide our semi-join program
that evaluates Q. In G o, choose i as the root o f the tree and suppose i has m - 1
children, m _> 1. For simplicity, we rename the relations so that the root of the tree
is 1 (formerly i) and its children are 2 m. Each of these children is the root of a
query subtree, and therefore they define the set o f queries Q2 Qm. We now
recursively define the reducing semi-join program f o r 1 in Q, denoted oo.1, as follows:

(i) if m = 1, then oQ.a = () , the empty program;
(i i) e l s e oo,1 = (o02,2 OOm.m, R1 IX R2, R1 t,< R3 R1 t~ Rm).

To produce oo,, rename the relations with their original indices.
In words, oo,1 executes one semi-join per edge in Go, in a breadth-first leaf-to-root

order. Equivalently, reducing semi-join programs can be produced mechanically
from queries using the detachment algorithm of Wong and Youssefi [13]. An example
reducing semi-join program appears in Figure 3.

The following lemma shows that oo,i is the program we are looking for to prove
Theorem 1.

LEMMA 4. Let Q be a query with qualification q whose query graph is a tree.
Choose i E Vo as the root o f the tree. Then oQ, i (S) [R i] = S * = Q(S)[Ri]. That is, oo, i

fu l ly reduces Si with respect to Q.

a For notational convenience, we shall use i in place of Ri.

Using Semi-Joins to Solve Relational Queries 31

paooF. The proof is by induction on the height of the tree Go (the height of a
tree is the length of the longest path from the root to a leaf). Choose i E V o as the
root of the tree.

Basis Step. Suppose the height of Go is 0. Since no join clauses on one variable
are possible, q is empty. Hence S = S*. Since ao,i is empty, ao,i(S) = S*.

Induction Step. Suppose the lemma is true for all queries whose query graph is
a tree of height <p. We show it to be true if the height of G o equals p. As before, let
us rename the relations so that i becomes 1 and i's children are 2 m, m > 1. Let
Q2, .-- , Qm be the queries, with qualifications qz qm, detrmed by the subtrees (of
Go) rooted by each child. Finally, let cj, 2 <_j <_ m, be the join clause linking relation
j to relation 1, and let q' -- c2/k • . . /~ Cm.

From the definition of query, we have

(tl t ,) E Q (S) iff tj E Sj (l _< j_< n) and q(tl t,).

It immediately follows that tl E Q(S)[R1] iff

3tj E Sj (2 _<j _< n) such that q(h t ,) . (1)

Expanding q into its component clauses, (1) holds iff

3t~ E Sj (2 _<j _< m) such that
(q'(h tin) and
3tk E Sh (m < k _< n) such that (q2(tl t ,) A . . . A qm(h t,))). (2)

Each qj, 2 <_j <_ m, ranges over a set of relations that is disjoint from every other qk,
k # j . Thus, since each qj is evaluated by Qj,

3 t j E S j (2 - < j - < m) 3 t k ~ S k (m < k _ n) such that
(q.,(h t ,) A . . . A qm(h t,)) iff 3tj ~ Sj (2 <_j <_ m) tj E Q~(S)[Rj]. (3)

Since each Gq~, 2 _<j _< m, is a tree of height <p, by the induction hypothesis we have
that Qj(S)[Rj] = ooj, j (S)[Rj]. Substituting this into (3) and combining (3) with (2),
we find that (1) holds iff

3tj ~ Sj (2 ___j_< m) such that (q'(h tin) and tj E aoj, j (S)[Rj]). (4)

Let S~ = oq~u(S)[Rj]. Each clause o f q ' can be evaluated by a semi-join, so (4) holds
iff

3 tj E Sj (2 _< j _< m) such that
(h tin) ~ (R1 IX R2 R] IX Rm)({S , , S~, • S+m}). (5)

But OQ.~(S)[R~ Rm] exactly calculates (R~ IX Re Ra IX R,,)({S~, S~,
S+m}),-SO h ~ Q(S)[R,] iff 3tj E $i, 2 <_ j <_ m, such that (t, tin) E
OQ.KS)[R~ R,,]. It immediately follows that Q(S)[R~] = OQ.~(S)[R~], as
desired. []

Note that OQ,, produces S,* but not S j*, j # i. That is, only relation S~ is fully
reduced by OQ.~. Intuitively, the reason is that each relation (except for S,) is only
reduced by a proper subset of the clauses in the query. More specifically, each
relation Sj is reduced by clauses in the subtree of Q rooted a t j (considering i as the
root of Q's tree). To produce S*, we first perform oo.~ and then apply semi-joins from
the root i down the tree toward the leaves. The end effect is that each relation is
reduced by every clause. Proceeding formally, the program we want is oq =
(o~.,, o~).~,), where o?~iis defined (with the usual renaming of relations) as follows:

(i) if m = ! then o~a = {), the empty program;
(ii) else o?~!~ = (R2 IX R~ R,, IX R,, o~.z o?~ ,,),

32 P . A . BERNSTEIN AND D. W. CHIli

where 2 m are the children of 1 as before. The principal property of o o is that
for each j E Vo, ooj is embedded in oo. That is, for each j, oo j can be obtained frona ~i
oo simply by excising certain semi-joins from oo. Clearly for all S, oo(S) _< ooj(S). ~
The proof of Theorem l now follows directly.

PROOF OF THEOREM 1. Let Q E TQ and assume G O is a tree. Let S' = oo(S). ~
Since for each j ~ Vo, oo,i is embedded in oo, it follows from Lemma 4 that S' = S*. ii
ooj contains n - 1 semi-joins and o o contains 2n - 2 semi-joins.

I f Go is not a tree, then since Q E TQ, there is an equivalent query Q' whose
graph is a tree. The proof goes as before, using Q" and the fact that Q'(S) = Q(S),
by definition of equivalence. []

4.3 CYCLIC QueRies. Queries in CQ are very badly behaved with respect to
semi-joins compared to those in TQ. Not only are semi-joins incapable of obtaining
S* in general, but even the best possible reduction of S may only be obtainable by
a very long semi-join program.

Let Q be a query with qualification q. We de/me PROGRAMS(Q) to be the set of
all semi-join programs that only perform semi-joins that correspond to clauses of q.
Let S be a database state. We de/me 0<-REDUCTIONS(Q, S) = {S'I S' _< S,
Q(S') = Q(S), and 3o ~ PROGRAMS(Q) such that o(S) = S'}. In words, ~-
REDUCTIONS(Q, S) is the set of all database states that can be obtained from S by
semi-join programs that correspond to Q. From the definition it immediately follows
that 0<-REDUCTIONS(Q, S) _C REDUCTIONS(Q, S). A full ~-reduction S ~ of S
with respect to Q is an element of ~-REDUCTIONS(Q, S) such that there is no S'
in ~-REDUCTIONS(Q, S) with S' < S ~.

LEMMA 5. For each Q and S there is a unique full ~-reduction, S ~.

PROOF. If I ~-REDUCTIONS(Q, S) I = 1, then t~-REDUCTIONS(Q, S) = {S}
and we are done. Otherwise, let S 1 and S 2 be two full ~-reductions of S with respect
to Q that were produced, respectively, by ot and o2. Since S ~ is a full 0<-reduction,
o2(S *) = S 1. Since S ~_< S, by Lemma 2 o~(S 1)_< o2(S) = S 2. So S ~ ~ S 2. The
symmetric argument shows that S 2 = o~(S 2) _< oi(S) = S I. Hence S ~ = S 2. []

Theorem 1 says that S* = S ~ for tree queries. However, for cyclic queries there are
states S for which S* is not in t~-REDUCTIONS(Q, S). To show that S* andS ~ are
not always identical for cyclic queries, we will look at a special subclass of CQ that
has minimal cycles.

Let Q be a query with qualification q. The closure of Q, denoted Q +, is a query
whose qualification, denoted q+, includes q and all clauses implied by q under
transitivity. (E.g., if (Ra.AI = R2.A2) and (R2.A2 = R3.A3) are in q, then (R~.A~ =
R3.A3) is in q+.) Clearly Q+ ~ Q. Also, if Q1 = Q2, then Q~ = Q2*. For if Qi ~ # Q~,
then there is a clause in q~"- q~', say; by selecting a state S such that some tuple in
the Cartesian product of the relations in S satisfies q~" but does not satisfy qi ~ - q~',
we have Q1(S) # Q2(S), or Q1 ~ Qz.'

LEMMA 6. Q~ =- Q2 iff Q ~ = Q ~.

PROOF. Follows from the above argument. []

A qualification q is called proper cyclic if it is of the form Af-~ (Ri.Am =
Ri+b,4i+Ll), where p > 2, 1 is the successor of p, and all A~,j are distinct. A query is
proper cyclic if its qualification is proper cyclic.

4 This result does not hold when tuple variables are introduced; see [5],

Semi-Joins to Solve Relational Queries

S~(A~.I AI~) S2(A2.a A2~) .. . Sr(Ap.l Ap~)

33

0 1 1 2 p - I p
p p + 1 t7+ 1 p+2 2 p - 1 0
al a2 al al a~ at
a2 a3 a2 a2 a2 a z

: : a z a s a s a s
•

a m - I a m

a m 1 a m a m a m a m

FIG. 4. The database constructed for the proof of Lemma 7.

fitively, a proper cyclic qualification corresponds to a nonreducible cycle. I f Q1
per cyclic, then Q1 = Qi ~. Also, if Q1 --- Q2, then (by Lemma 6) Q1 = Q~" = QL
o clause of Q1 is implied by the others, so Q~ = Q~" implies Q~ = Q2. Hence
is no other query equivalent to Q~.

Proper cyclic queries are badly behaved with respect to semi-joins as indicated by
the following lemma.

LEr~raA 7. For any proper cyclic query Q, there exists a database state S such that
(i) S ~ # S*, and (ii) the fewest number o f semi-joins required to obtain S ~ is O(m),
where m is the number of tuples of some relation in S.

PROOF. Let Q have qualification q = A,'=~ (Ri.Ai,2 = Ri+l.Ai+l.1), where p _> 2.
For convenience we assume that all domains of all relations are integer valued.
Choose some integer m > 1 and a set of distinct integers {a~ am}, where aj > 2p
for 1 _< j _< m. In S let all of the domains not referenced by q have arbitrary values,
so that in constructing S, we consider all relations to be binary. In S let S~ =
{(0, 1), (p , p + 1), (am, 1)) t.J {(a/, a./+a):1 < - - j < m } , let S v = { (p - 1, p),
(2 p - 1,0)} t_l {(ay, ay): 1 < j <- m}, and for each k, 1 < k < p , l e t S k = { (k - 1,
k), (p + k - 1,p + k)} LI {(a~-, aj) : 1 <--j<_m} (see Figure 4).

To show that S* ~ S ~, we observe that the tuples { (k - 1, k), (p + k - 1,
p + k)} are in each S~, 1 < k < p , and { (p - 1, p), (2p - 1, 0)) are in S,. Yet
S* = (6 ~) , so S* ~ S ~. In addition, S is constructed so that only one possible
semi-join can reduce the size of any relation in S, and furthermore every database
produced by a sequence of reducing semi-joins has this property. In fact, the only
(nonredundant) sequence of semi-joins that can produce S ~ is

do m times;
d o k = 1 t o p b y 1;

Rk+I ~ R,;
end;

end;

where 1 is the successor ofp. This requirespm semi-joins. []

The proof of Lemma 7 actually supports a stronger statement about semi-join
programs for proper cyclic queries. The constructed database (Figure 4) is designed
so that each semi-join only reduces the database by one tuple. Even if one were
willing to be satisfied with a reduced database larger than S ~, obtaining such a
reduction would still be slow. To obtain S' > S ×, the number of semi-joins required
equals the number of tuples in S minus the number in S'.

Of course, not every cyclic query is proper cyclic. However, we can strengthen
Lemma 7 to cover all cyclic queries. We begin by showing that a certain type of
proper cyclic qualification is embedded in every cyclic query.

34 P . A . BERNSTEIN AND D. W.

A qualification q ' is a proper cyclic subqualification o fq if

(1) q' is contained in q+,
(2) q' is proper Cyclic, and
(3) for any two domains Ri.Ai and Rj.Aj that appear in clauses in q', if

(Ri.Ai = Ry.Aj) is in q+, then (Ri.Ai -- Rj.Aj) is in q.

Notice that q is a proper cyclic subqualification of q iff q is proper cyclic, since (3) is
irrelevant when q is proper cyclic.

Part (3) of the above definition guarantees that the cycle corresponding to q"
cannot be broken up into two shorter cycles, for if (Ri..4i = Rj.,4j) were in q' but not
in q', then a "path" of clauses from Ri.Ai to Rj.Aj in q' could be replaced by
(Ri.Ai = Rj.Ai), thereby shortening or destroying the cycle.

LEMr~A 8. Query Q with qualification q is in CQ iff q has a proper cyclic subqual-
i ficalion.

The proof of Lemma 8 is most conveniently presented after we have developed
more machinery for manipulating equivalent queries. Section 5 develops this ma-
chinery for the purpose of testing membership in TQ, so we defer the proof to the
end of that section.

Since every cyclic query has a proper cyclic subquery, Lemma 7 holds at least for
the proper cyclic subquery (when it is treated as a proper cyclic query). We will show
that Lemma 7 actually holds for the entire query. Since by Lemma 8 every cyclic
query has a proper cyclic subquery, we can use the database of Figure 4 to produce
the desired effect. However, there is a technical problem here; we must assign data
values to all domains outside the proper cyclic subquery. We will show that this can
be handled by making the rest of the database a Cartesian product.

Let Ai be the domains of Ri. If B C_ Ai, then Si[B] denotes the projection of Si on
B, where Si[B] = {(s.B1 s.Bm) Is E Si and By E B for 1 _<j_< m}. Let (Ri × Ry)
denote the Cartesian product operation. Now if Si = Si[B] × Si[Ai - B], then for
any Ai,k E B we have

(Ri A,.,~. ~(ay} ((Si, S j })

= < R , [B] × R , [A , - B] ~ (< R ~ [B] ~ R~>({Si[B], S,[A~ - B] , S , })) .

In words, if Si is a Cartesian product of two subrelations, then any semi-join on Si
can be considered as a semi-join on the database consisting of the subrelations of Si.
A Cartesian product operation can always reconstruct the database to its original
form--either before or after the semi-join.

Let q' = AI~=I(Ri.Ai,2 = Ri+l.Ai+a,l) be a proper cyclic subqualification of some
query Q. We say that a database state S is decomposable with respect to q ' if

(dl) for 1 < i < p , S~ = Si[A~,~,A~,2] × (×h,,1,2 Si[A~,h]);
(d2)_ fo rp < i <_ n, Si = xh Si[Ai.k];
(d3) for all i and k, Si[Ai.k] # O; and
(d4) for 1 --< i _<p and k = 1, 2, Si[Ai.k] ~ [~Ri.Al.tgd(mi.t:) Sj[Aj.I];

where J(Ai.k) is the set of domains that join with Ai.h in q+.
Let DOMAINS(q) be the domains referenced in qualification q, and let RELA-

TIONS(q) be the relations referenced in qualification q. Intuitively, by making S
decomposable with respect to q' we have made every relation not in RELATIONS(q ')
a Cartesian product (by (d2)); and for each relation in RELATIONS(q ') we have
made those domains not in DOMAINS(q ') a Cartesian product (by (d l)). Further-
more, (d3) and (d4) imply that no domain not in DOMAINS(q ') can reduce any

Using Semi-Joins to Solve Relational Queries 35

domain in DOMAINS(q') by means of semi-joins, since the former are supersets of
the latter. Finally, by the above observation about semi-joins applied to Cartesian
products, we can decompose S so that domains not in DOMAINS(q') become single-
domain relations; semi-joins applied to this decomposed database have the same
effect as if they were applied to S.

Let q' be a proper cyclic subqualification of q, and let S be a database state
decomposable with respect to q'. We can decompose S by applying a decomposition
mapping which maps S into Sd SO that each domain not in DOMAINS(q') becomes
a single-domain relation. Having decomposed S, we can apply a renaming mapping
to q (and q'), which maps q (and q') into qd (and qb) by mapping domain references
in q and q' on S into corresponding domain references in qa and q~t on Sd. We make
two important observations regarding the decomposed database and renamed query:

(dml) Each relation R in RELATIONS(q~) is a binary relation containing only
the two domains of R in DOMAINS(q'). All other relations in Sd are
unary.

(dm2) For each domain (= unary relation) Rk.Ak not in DOMAINS(q~), either
there is no domain Ri.Ai in DOMAINS(qb) such that (Rk.Ak =
Ri.Ai) is in q~, or there is exactly one clause in q~, (Rz.A~ = Rj.Aj), such
that (Ri.Ai = Rk.Ak) and (Rj.Aj = Rk.Ak) are in q~.

(din2) follows from the fact that q~ is a proper cyclic subqualification; if there are
two (or more) distinct clauses of q~, (Ril.Ail = Rjl.Ail) and (Ri2.Ai2 = Rj2.Ayz), such
that (Rk.Ak = Ril.Ail) and (R~.Ak = R~z.Ai2) are in q3, then part (3) of the definition
of proper cyclic subqualification is violated. Thus, the clauses of q~ partition the
relations that are not in RELATIONS(q~) but are connected to RELATIONS(q~t)
in the query graph of Qd.

The following lemma extends the first part of Lemma 7 to arbitrary cyclic queries.
It implies that if q' is a proper cyclic subqualification of q and S* ~ S ~ with respect
to q', then S* # S ~ with respect to q.

LEMMA 9. Let Q be a cyclic query with qualification q, let q' be a proper cyclic
subqualification of q, and let S be a database state decomposable with respect to q'. Let
Sd, qd, and q~ be the results o f decomposing S and renaming q and q'. Then the full
semi-join reduction of Sa with respect to qa (denoted S~,q~) equals the full semi-join
reduction of Sd with respect to q ~ (denoted S ~.q~) on each relation in RELA TI O N S (q ~).

PROOF. It suffices to show that no relation S~.q:,[RELATIONS(q~'~)] can be
reduced by a semi-join corresponding to a clause in q~. However, this follows directly
from (d4) and (dm2). []

To extend the remainder of Lemma 7, we introduce some additional notation.
Given a query Q and a database state S, we define M(Q, S) to be the length of the
shortest semi-join program to produce a full semi-join reduction of S with respect to
Q; that is,

M(Q, S) = min Io[.
o c P R O G R A M S (Q ~

o (S) = S ~

LEMMA 10. Let Q be a cyclic query with qualification q, let q' be a proper cyclic
subqualification of q, and let S be a database state decomposable with respect to q'. Let
Sa, qd, and qb be the results o f decomposing S and renaming q and q'. Then
M(Q~, Sd) -< M(Qd, Sa).

36 P . A . BERNSTEIN AND D. W. CHIU

PROOF. Let o be a semi-join program of length M(Qa, Sa) such that e(Sd) =
S ~ To prove the lemma, we will transform o into a' such that M(Q'a, Sd) d, qd •
Io'1 -< Iol and a'(Q'a, Sa) = S~.q~,. Begin by finding the first semi-join in o, say
(Ri A~XAj Rj), that reduces a relation in RELATIONS(q~). If (Ri~Ai = Rj.Aj) is in q~,
then leave the semi-join as is. Otherwise, remove (Ri A~XA~ R/) from a. By (d4) and
(din2), (RiA}XAjR~) could only reduce Sa.i if there were a chain of semi-joins
preceding it of the form (Ry, A~0<,~, Rk), (Rj 2 Aj2[~Ajl g j I) Rj AjI~Ayn, R j r n) , where
(Rk.Ak = R~,4i) is the unique clause in q~t referencing Ri.4i. If the chain exists,
remove it from a and insert (R~A,t~Ah Rk) in o where (Ria~ O<A/Ry) used to be; this
has exactly the same effect on R~ as the chain did. Now find the second such semi-
join, perform the replacement if appropriate, etc., until all semi-joins reducing
relations in RELATIONS(q~t) have been examined and/or replaced. Now all semi-
joins in o that reduce relations in RELATIONS(q~) correspond to clauses of q~. So
remove from o all semi-joins that do not reference relations in RELATIONS(q~),
since none of these semi-joins can affect relations in RELATIONS (q'd). The resulting
semi-join program o' is no longer than o, and it produces the same effect on relations
in RELATIONS(q~) as o. Since a(Qd, Sd) [RELATIONS(q~)] --- S),q~, by Lemma
9~ p p ~ a (Qa, Sd) Sd.q~ as desired. I-1

We can now extend Lemma 7 to all cyclic queries.

THEOREM 2. For any query Q E CQ, there exists a database state S such that
S" ~ S* and the fewest number of semi-joins required to obtain S~ is O(m), where m
is the number of tuflles of some relation in S.

PROOF. By Lemma 8, q has a proper cyclic subqualification q'. Let S be a
database state decomposable with respect to q" such that if Sd is the decomposed
version of S and qd, q'a are the renamed versions of q, q', then Sa[RELATIONS(q~)]
is a state satisfying Lemma 7. That is, S~.~ ~ S~.q~, and M(Q'd, Sd) is of size O(m).
By Lemma 9, S),q~[RELATIONS(q~)] = S),qd[RELATIONS(q'a)], so S~,qd ~ S~,q~.
By Lemma 10, M(Q'd, Sd) < M(Qa, Sd), SO M(Qd, Sd) is at least of size O(m). Since
all of these results hold on S by taking the inverse of the decomposition and renaming
maps, the theorem is proved. []

5. A Fast Tree Query Membership Test

To make use of our result that shows tree queries to be well behaved with respect to
semi-join, we need a procedure that tests if a given query is in TQ. In this section we
present such a test that runs in linear time. The test is constructive. If the given query
is in TQ, an equivalent query is produced whose query graph is a tree.

Given a query with a cyclic query graph, we cannot immediately tell if the query
is cyclic. For example, if the qualification consists of the cycle ((R1.A = R2.B) and
(R2.B = R3.C) and (R3.C = RI.A)), we can drop any one of the clauses; the result is
a tree tluery that is obviously equivalent to the given query. The property of the cycle
that permits us to drop one clause is that each relation participates in the cycle with
only one joining domain.

There is a second situation in which a cycle can be broken without changing the
meaning of the query. Consider the qualification ((R~.A = R2.B) and (R2.B = 1~.C)
and (Ra.C = R1.D)), which produces a cyclic query graph with edges {(R1, Rz),
(R2, R3), (R3, Ra)}. This qualification does not fit the form of our previous example,
because R1 has two joining domains. Yet we can transform the qualification into
((RI.A = R2.B) and (R2.B = R,~.C) and (R~.A = RI.D)); since RI.A must equal R:I.C
in the first qualification, we can substitute (R~.A = R~.D) for (R:~.C = R~.D). The

!i-Joins to Solve Relational Queries

R 1.A R2.B R2.C R 2.F

I ; / /
R 5 .E Rs.D R4.G

(a)

R1 R2

R~ R 4

(b)

:G. 5. A join graph and its corresponding query graph for query Q with qualifi-
tion q = ((RIM = R2.B) A (R2.C= Rz.D) A (Ra.E = R].A) A (R2.F = R4.G)). (a)

Join graph Jo. (b) Query graph Go.

37

luery graph contains edges {(R1, R2), (R~, Ra)} and is now acyclic; we have
m interrelation clause by an intrarelation clause that does not produce a
ph edge. Intuitively, we have replaced a join between two relations by a
within a single relation, thereby breaking the cycle. As we will now show

Lhe transformations described by the above two examples are the only ones

~ ¢eded to map a tree query whose query graph is cyclic into an equivalent query
whose query graph is a tree.
!~ To perform the above transformations on clauses, we will use another graph model
o f a query. For a query Q with qualification q, we define the join graph for Q,
Io(V, E), to be a node-labeled undirected graph where

V = (Ri.A [A is a domain of Ri}

i lind

E = ((Ri.A, Ri.B)[(Ri.A = Ri.B) is a join clause in Q}.

r The join graph simply represents the joins in a qualification by edges in the graph
(e.g., see Figure 5). We say that a join graph J corresponds to a query graph G if the
query represented by J has (the unique) query graph G. Unlike query graphs, join
graphs are not multigraphs.

The transitive closure of Jo, denoted J~, represents all join clauses that are logically
implied by Q's qualification. A spanning forest of J~ is defined as a minimal subgraph
of J~ whose closure is J~. A spanning forest of J~ is in some sense a minimal
representation_ of a query. The following lemma says that to test if Q ~ TQ we need
only look at spanning forests of J~.

LEMMA 11. Q E TQ iff there exists a spanning forest of J~ that corresponds to an
acyclic query graph.

PROOF. Since a spanning forest of J~ has the same transitive closure as Jo, the
query represented by the spanning forest is equivalent to Q. If the spanning forest
corresponds to an acyclic query graph, then Q is obviously equivalent to a query
whose query graph is a tree, and hence Q E TQ. If Q E TQ, then it is equivalent to
some Q' whose query graph is a tree. Any spanning forest of its join graph Jo" is a
spanning forest of J~ and therefore satisfies the conditions of the lemma. []

There is a particular kind of spanning forest of J~ which is easy to compute and
which has the property that Q E TQ iff such a spanning forest corresponds to an
acyclic query graph. This kind of canonical spanning forest is constructed as follows

38

RI.A R2.C Rs.E R4.G R1.A R2.C

R I .B R2.0 R3.F R1.B R2.D
(a)

P. A . B E R N S T E I N AND D. W. CHIU

R$.E R4.G

R~3.F
(b)

Fxc;. 6. A canonical spanning forest for query Q with qualification q = ((Rj.,4 = R._,.C) A (R..,.C = R..,.D)

A (R_,.C = R j .B) A (R..,.D -- R:3.F) A (R~.B = R:~,F) A (R:~.E = R.~.G). (a) Join graph Jo (b) A canonical
spanning forest of J~*

(see Figure 6 for an example):

do for each connected component of JQ;
partition the nodes according to the relations that name them;
for each partition, connect all the nodes in the partition by a chain;
choose one node from each partition and connect them by a chain;

end;

Each tree in the forest spans a connected component of J~. Since there is some choice
in constructing each tree, canonical spanning forests are not unique for each JQ.
However, the following lemma shows that any one of them can tell if Q ~ TQ.

LEMMA 12. For every query Q and for every canonical spanning forest j c of J~,
Q ~ TQ i f f J c corresponds to an acyclic query graph.

PROOF. The if part follows from Lemma 11. To prove the only-if part, suppose
j c corresponds to a cyclic query graph G c. We will show that every spanning forest
of J~ corresponds to a cyclic query graph, so that by Lemma 11, Q ~ TQ. Therefore
Q ~ TQ must imply that every j c corresponds to an acyclic query graph.

Consider a simple cycle in G c, i.e., a cycle in which each node is incident with at
most two edges in the cycle. The edges of this cycle map directly into edges of jc;
suppose this corresponding sequence of edges of j c is S = [(v0, vl), (v2, v3)
(vz,-2, v2,-~)]. Clearly, v2i-t and v2i are labeled by domains of the same relation for
i --- 1 n (arithmetic is mod 2n). For each i, 1 _< i _< n, if v2;-~ and v2i are in
the same connected component, then by the construction of canonical spanning
forests, v2;-1 -- v2i. Thus S can be represented as a sequence o f p + 1 paths, p _> 0,
[[(V0,0, V0,1), (VO,1, V0,2) (V0,mo--1, V0,mo)] [(Vp,0, "Vp,1) (Vp,mp--l, vp,%)]], where
each path is entirely contained in a connected component of J~.

We claim p ___ 1. Suppose p = 0. Since Vo.o and VO,mo are in the same connected
component of the join graph and are in the same relation, the construction of
canonical spanning forests requires that vo.0 = vm.0. But then the path in the canonical
spanning forest is a cycle, a contradiction. So p > 0.

Consider one of the paths, [(vi.0, v~,l) (Vi,mi-t, Vi,m,)]. Since the transitive closure
of any spanning forest of J~ equals the transitive closure of j c , there must be a path
from v~.0 to vi,,,~ in all spanning forests of J~. This holds for 0 _< i _< p. Hence for each
spanning forest F there exists in F a sequence of p + 1 paths SF with the same
endpoints as the p + 1 paths of S.

To complete the proof, we must show that for each spanning forest F, the sequence
SF produces a cycle in its corresponding query graph. Since we chose a simple cycle
in G c, I~m i and v,,j are named by domains of different relations if i # j. Since p > 0,
we have at least two distinct nodes in the query graph path that corresponds to St.
So the path is a cycle. Since all spanning forests have a cycle, by Lemma 11 Q E TQ,
a contradiction. []

Using Semi-Joins to Solve Relational Queries

THEOREM 3. Testing if Q ~ TQ can be decided in linear time.

PROOF. The algorithm for testing if Q ~ TQ is

I. Construct a canonical spanning forest jc ofjo"
2. Construct the query graph G c corresponding to jc.
3. If G c is acyclic, then answer Q E TQ; else answer Q ~ CQ.

39

By Lemma 12, the algorithm is correct. Both spanning forest and cycle detection can
be computed in time linear in the number of edges of the graph [1]; so the algorithm
has linear worst-case time. []

A tree query membership test when multiattribute semi-joins are permitted appears

i3].
We conclude by proving Lemma 8 from Section 4.3 as promised.

LEMMA 8. Query Q with qualification q is in CQ iff q has a proper cyclic
subqualification.

PgOOF. If. Let q' be a proper cyclic subqualification of q. When we construct
the canonical spanning forest, in the third step of the do-loop we choose to include
a clause of q' as an edge in a chain whenever possible. Clearly, every clause of q' can
be added, since they are all in q+. Also, by part (3) of the definition of proper cyclic
subqualification, each connected component of the canonical spanning forest can
contain at most one clause from q'; so, incorporating clauses from q' can never cause
a cycle in a connected component. Since all clauses of q' are embedded in the
spanning forest, the query graph corresponding to the forest has a cycle. By Lemma
II, Q ~ C Q .

Only if. Suppose Q ~ CQ. Construct a canonical spanning forest F for Q. By
Lemma 11 there is a cycle in the corresponding query graph. Select such a cycle, and
let C be the edges of F that correspond to the edges of the cycle. From C, construct
a qualification q' as follows: For each path in C which is not a proper subpath of any
other path in C whose endpoints are, say, Ri.A and Ri.B, include (Ri.A = Ri.B) in q'.
Clearly q' is in q+ and q' is proper cyclic. Also, i f(Ri.A = Rj.B) is in q+ and Ri.A
and Rj.B are in DOMAINS(q'), then (Ri.A = Ri.B) is in q'; this follows because
R~.A and Ri.B must be in the same connected component of F, and each connected
component of F has at most one clause in q' by construction, so q' is a proper cyclic
subqualification o f q as desired. []

6. Conclusions

Semi-joins are commonly used as basic operations in query processing algorithms,
especially in a distributed environment. In these algorithms a strategy is simply a
semi-join program. Our results show that for tree queries, as soon as a strategy
embeds eo, a full reduction and, hence, the full potential of semi-joins are achieved.
Consequentiy the strategies tend to be short; at worst their length is bounded by a
linear function of the number of relations referenced. Furthermore, tree-query
membership can be tested in linear time. This suggests that searching for optimal
strategies is quite likely to be easier for tree queries than for cyclic ones. We therefore
recommend that the optimization problem for tree queries be treated as an important
(and probably more tractable) special case of the general query processing problem.

For cyclic queries, finding good semi-join programs is likely to be quite difficult.
Since cyclic queries are common too, we will either need to find new tactics (other

40 P. A. BERNSTEIN AND D. W. CHII

than semi-joins) for solving them or will p robably have to be satisfied with heuristi
approaches such as that o f [14].

We emphasize, however, that our results only describe worst-case behavior o f semi
jo in strategies that try to achieve f u l l reductions. The pathological case that show
cyclic queries to behave badly may rarely occur. More important , full reductions ar~
not always profitable, and a query opt imizer should only produce the most profitabl,
semi-join strategies. So while we have learned much about the strategy space o f semi
jo in programs, the query opt imizat ion problem on "average" databases using th
semi-join tactic remains open.

ACKNOWLEDGMENTS. We thank Wing S. W o n g for simplifying our first version 0
the T Q membership algorithm, which resulted in the one presented in Section .~
M a n y notat ional improvements and clarifications over earlier drafts were contribute,
by Marco Casanova, Nat Goodman , and the referees. Finally, we thank M. Clark~
R. D 'Arcangelo , and C. Louis for their expert preparat ion o f this manuscript .

REFERENCES

1. AHO, A., HOPCROFT, J., AND ULLMAN, J. The Design and Analysis of ComputerAIgorithms. Addison-
Wesley, Reading, Mass., 1974.

2. AHO, A., SAGIV, Y., AND ULLMAN, J.D. Equivalence among relational expressions. SIAM J. Comput.
2 (May 1979), 218-246,

3. BERNSTEIN, P.A., AND GOODMAN, N. Full reducers for relational queries using multi-attribute semi-
joins. Proc. Computer Networking Symposium, Gaithersburg, Md., 1979, pp. 206-215.

4. CHAMBERLIN, D.D., ASTRAHAN, M.M., ESWARAN, K.P., GRIFFITHS, P.P., LORIE, R.A., MEHL, J.W.,
REISNER, P., AND WADE, B.W. SEQUEL 2: A unified approach to data definition, manipulation,
and control. IBM J. Res. Dev. 20, 6 (Nov. 1976), 560-575.

5. CHANDRA, A.K., AND MERLIN, P.M. Optimal implementation of conjunctive queries in relational
data bases. Proc. 9th Ann. ACM Syrup. on Theory of Computing, Boulder, Colo., May 1976, pp. 77-
90.

6. CODD, E.F. A relational model of data for large shared data banks. Commun. ACM 13, 6 (June 1970),
377-387.

7. CODD, E.F. Relational completeness of data base sublanguages. In Data Base Systems, R. Rustin, Ed.,
Courant Computer Science Symposia Series, Vol. 6, Prentice-Hall, Englewood Cliffs, N.J., 1972, pp.
65-9O.

8. HELD, G.D., STONEBRAKER, M., AND WONG, E. INGRES--A relational data base management
system. Proe. AFIPS 1975 National Computer Conf., AFIPS Press, Arlington, Va., 1975, pp. 409-416.

9. OZKARAHAN, E.A., SCHUSTER, S.A., AND SEVCIK, K.C. Performance evaluation of a relational
associative processor. ACM Trans. Database Syst. 2, 2 (June 1977), 175-196.

10. ROTHNIE, J.B. Evaluating inter-entry retrieval expressions in a relational database management
system. Proc. AFIPS 1975 National Computer Conf., AFIPS Press, Arlington, Va., 1975, pp. 417-423.

11. ROTHNIE, J.B., AND GOODMAN, N. A survey of research and development in distributed database
management. Proc. 3rd lnter. Conf. on Very Large Data Bases, Tokyo, Japan, 1977, pp. 48-61.

12. SMIT,, J.M., AND CHANG, P.Y.-T. Optimizing the performance of a relational algebra database
inte.rface. Commun. ACM 18, 10 (Oct. 1975), 568-579.

13. WON(:;, E., AND YOUSSEFI, K. Decomposition--A strategy for query processing. ACM Trans.
Database Syst. 1, 3 (Sept. 1976), 223-241.

14. WONO, E. Retrieving dispersed data from SDD-I: A system for distributed databases. Proc. 1977
Berkeley Workshop on Distributed Data Management and Computer Networks, Berkeley, Calif.,
May 1977.

RECEIVED DECEMBER 1978; REVISED SEPTEMBER 1979; ACCEPTED SEPTEMBER 1979

Journal of the Association for Computing Machinery. Vol. 28. No. I. January 1981.

