
A Simple Model for Analyzing P2P Streaming
Protocols

YiPeng Zhou Dah Ming Chiu
Information Engineering Department

The Chinese University of Hong Kong

John C.S. Lui
Department of Computer Science & Engineering

The Chinese University of Hong Kong

Abstract— P2P streaming tries to achieve scalability (like P2P file
distribution) and at the same time meet real-time playback re-
quirements. It is a challenging problem still not well understood.
In this paper, we describe a simple stochastic model that can
be used to compare different data-driven downloading strategies
based on two performance metrics: continuity (probability of
continuous playback), and startup latency (expected time to start
playback). We first study two simple strategies: Rarest First and
Greedy. The former is a well-known strategy for P2P file sharing
that gives good scalability, whereas the latter an intuitively
reasonable strategy to optimize continuity and startup latency
from a single peer’s viewpoint. Greedy, while achieving low
startup latency, fares poorly in continuity by failing to maximize
P2P sharing; whereas Rarest First is the opposite. This highlights
the trade-off between startup latency and continuity, and how
system scalability improves continuity. Based on this insight, we
propose a mixed strategy that can be used to achieve the best
of both worlds. Our algorithm dynamically adapts to the peer
population size to ensure scalability; at the same time, it reserves
part of a peer’s effort to the immediate playback requirements
to ensure low startup latency.

I. Introduction

Video streaming over the Internet is already part of our daily
life. The engineering of video streaming from a server to a
single client is well studied and understood. This, however, is
not scalable to serve a large number of clients simultaneously.
The earlier vision for solving this problem is based on IP
multicast, which relies on the routers in the network to manage
the distribution and duplication of content from one source
to multiple receivers. Due to technical complexity and other
deployment issues, IP multicast has not been widely deployed.
Instead, what emerged is a form of multicast implemented
by an overlay network. There are different types of overlay
networks, but a peer-to-peer (P2P) overlay network proves
to be especially scalable. In a P2P network, each client is
also a server (when the P2P network is working well), thus
when more clients join a multicast session more servers (peers
themselves) are automatically added to share the additional
load.

The earlier work on P2P content distribution was known
as application layer multicast [1] or end-host multicast [2].
Since then, there has been a significant body of work on P2P
streaming. In an invited paper [3], the existing approaches
are classified into two categories: one is tree-based, the other
is data-driven. Both tree-based and data-driven use multiple

paths (i.e. multiple spanning trees) for distributing content
from a source to each receiver, which is the key for achieving
scalability. The data-driven approach [4], [5], [6], [7], by not
focusing on trees explicitly, allows the distribution paths to be
determined based on data availability, which can adapt to the
dynamics of a P2P network.

Another important contributor to P2P streaming is the body of
work on P2P file sharing protocols. The most representative
and most influential work (in academic circles) is BitTorrent
(BT) [8], [9]. P2P file sharing is subtly different from P2P
streaming. On the one hand, it is less demanding since it does
not have real-time requirements; but on the other hand, it is
also more demanding because it requires the entire file (in
P2P streaming, peers join the video session from the points
determined by their arrival times). Nevertheless, both P2P file
sharing and P2P streaming need to deal with scalability by
connecting the peers together to serve each other, and the
works on BT provided the necessary insight in this area.

The contribution of the paper is as follows. None of the studies
on P2P streaming so far, to the best of our knowledge, has
formulated a tractable analytical model to help understand the
important system level design issues in P2P streaming - this
is the contribution of this paper. By assuming independent
and homogeneous peers (using the same size playback buffer
and chunk selection strategy) in a symmetric network setting,
we construct a simple analytical model that allows us to
compute the distribution of what each peer has in its buffer.
We can use this model to evaluate and compare a variety
of chunk selection strategies, which is the core of the data-
driven approach. Based on a simple model, one can understand
the relationships of important system parameters and metrics.
In particular, we first study two strategies: Rarest First and
Greedy. We show that Rarest First is much better in dealing
with scale, whereas Greedy is able to produce better playback
performance (continuity) in small scale networks. Also, if all
peers use Greedy, the playback delay can be smaller. We
also prove an important property of our model, that is a
certain number of buffer spaces used together with the Rarest
First strategy can convert a large peer population problem
into a much smaller peer population problem with equivalent
playback performance. This insight allows us to propose a
mixed strategy where a part of the buffer space is used to deal
with the need for scalability, and the other part of the buffer

space is used to achieve the best playback performance and
delay.

There are a large number of papers on various aspects of the
data driven approach of P2P streaming, e.g. [4], [5], [6], [7],
[10], [11], [12], [13], [14], [15]. The two most closely related
to our work are CoolStreaming [4] and BiTos [6].

CoolStreaming [4] is a very important prior study on data-
driven P2P streaming protocols because it is based on a
real prototype implementation and a relatively large scale
experiment (involving thousands of simultaneous peers) in
the real Internet. It serves as a proof of concept, and a
benchmark for a real working system. Our model captures
the main ingredients of the CoolStreaming system while stays
simple enough for analysis. The chunk selection strategy,
Rarest First (originally from BitTorrent), is one of the basic
algorithms we model. The playback performance derived from
our model matches closely to that observed in CoolStreaming’s
experimental results. Our abstract model allows us to consider
different chunk selection strategies and gain insight into the
trade-off of different metrics. In the end, we propose a better
chunk selection strategy and explain why it is better.

Another interesting data-driven P2P streaming study is BiTos
[6]. BiTos is also based on BitTorrent. In BiTos, the chunk
buffer is divided into two parts, one part for high priority
chunks and the other for lower priority chunks. As playback
deadline nears, a low priority chunk (still missing) becomes
high priority. A peer downloads high priority chunks with
probability p, and downloads lower priority chunks with
probability 1−p. For each part of the buffer, BiTos still adopts
the Rarest First Strategy. This is somewhat similar to the mixed
strategy we study, although there are important differences.
[6] provides no modeling and analysis of the chunk selection
strategy, and little experimentation to show the advantages and
disadvantages. All these issues are dealt with in this paper. In
fact, BiTos can also be analyzed by our model; but based on
our theory, our mixed strategy should be superior to BiTos.

The organization of the paper is as follows. Section II is on
the basic probabilistic model; Section III goes into the details
of how to model different chunk selection strategies; Section
IV provides various numerical examples, solved by both the
discrete and the continuous version of our model, as well as
validated by simulation. Section V describes application of our
protocol to real protocol design, and the conclusion is given
in Section VI.

II. Basic Model

In this section, we present the mathematical model for P2P
streaming applications. Let us first define the notations and
assumptions.

Let there be M peers in the network1. There is a single server

1As we will see later, if M is reasonably large then our results are
essentially independent of M , nor do they require M to be a constant.

n n-1 k 1

Sliding Window

n k+1 2

Sliding Window

1

One time slot later

k

Playback

Playback

Fig. 1. Sliding Window Mechanism of the buffer B

which streams chunks of (video) content, in playback order,
to the M peers. Each chunk has a sequence number, starting
from 1. Time is slotted and the server selects a peer randomly
in time slot t and sends chunk t to that peer.

Each peer maintains a buffer B that can cache up to n chunks
received from the network. We reference the buffer positions
according to the age of the chunks stored: B(n) is reserved for
the chunk to be played back immediately; B(1) is used to store
the newest chunk that the server is distributing in the current
time slot. In other words, when the server is distributing chunk
t (at time t), if t ≥ n − 1 then chunk t − n + 1 is the chunk
being played back by that peer. After each time slot, the chunk
played back in the previous time slot is removed from B and
all other chunks are shifted up by 1. In other words, the buffer
acts as a sliding window into the stream of chunks distributed
by the server, as shown in Figure 1. Each buffer space is
initially empty, and gets filled by the P2P streaming protocol,
either from the server or from other peers. The goal is to
ensure B(n) is filled in as many time slot as possible, so as to
support the continuous video playback and reduce the frame
loss probability.

Let pk(i)[t] denote the probability that the ith buffer space,
B(i), of peer k is filled with the correct chunk at time t. We
assume this probability reaches a steady state for sufficiently
large t, namely pk(i)[t] = pk(i). We call pk(i) the buffer
occupancy probability of the k th peer2.

Let us first consider a simple case that the server is the
only means for distributing chunks to peers, then the buffer
occupancy distribution can be expressed as follows:

pk(1) = p(1) =
1
M

∀k, (1)

pk(i+1) = p(i+1) = p(i) i = 1, 2, . . . , n−1 ∀k. (2)

Eq. (1) reflects the odds for the local peer to be picked
by the server, while Eq. (2) reflects the fact that successful
downloading only occurs at the first location of the buffer
(from the server). The playback performance, given by p(n),
is equal to 1

M , would obviously be very poor for any M >
1. This simple mathematical argument shows the scalability

2Note, the buffer occupancy probability is not a probability distribution of
i since it is not necessarily true that

�
pk(i) = 1.

problem when the server is the only means of distributing the
media.

To improve playback performance, peers help each other when
asked. We model the P2P mechanism as a pull process: each
peer selects another peer in each time slot to try to download
a chunk not already in its local buffer. This P2P downloading
model has the following implications:

• A peer may be contacted by multiple other peers in
a single time slot. In this case, it is assumed that the
selected peer’s uploading capacity is large enough to
satisfy all the requests in the same time slot. If peers are
selected randomly, the probability that it will be selected
by k ≥ 0 peers is β(k), where

β(k) =
(

M − 1
k

) (
1

M − 1

)k (
M − 2
M − 1

)M−1−k

for k ≥ 0. The likelihood of being selected by many
other peers is low, i.e., when there are M = 100 peers,
the probability that it is selected by more than three peers
is only around 1.8%.

• If the selected peer has no useful chunk, the selecting
peer loses the chance to download anything in a time
slot. This simplifying assumption can help us to derive
closed-form expression, and this type of assumption is
also made in other P2P file sharing models, i.e.,[16].

Furthermore, we assume homogeneous peers, namely, all peers
use the same strategy to select other peers and chunks to
download. The implication is that in the steady state, all peers
have the same distribution p(i) for the buffer occupancy, as
in the server-only downloading case above. In this paper,
we do not consider peer selection strategies. Intuitively and
from previous results in the literature, we know peer selection
strategy is an important factor when peers have different
uplink bandwidth, or when the paths to different peers have
different bottleneck capacity. In these scenarios, peers are non-
homogeneous and asymmetric. Peer selection has implications
on system performance and peers’ incentive to contribute
[9]. Since the focus of this paper is on the performance of
P2P streaming systems, we focus on the case that peers are
homogeneous and adopt the same (random) peer selection
strategy.

Once a peer is selected, a chunk for downloading must also be
specified. The chunk selection policy can be represented by a
probability distribution q, where q(i) ≥ 0, gives the probability
that the chunk needed to fill B(i) is selected. Hence, Eq. (2)
becomes:

p(i + 1) = p(i) + q(i) i = 1, . . . , n − 1, (3)

with the boundary condition of p(1) = 1/M . For i > 0,
q(i) is expected to be greater than 0 since there is a non-
zero probability that a peer may be found to fill B(i) if it is
not already filled. This implies p(i) is an increasing function
of i, hence collaboration by peers improve the playback
performance as expected.

Consider a particular peer k, and assume it selected peer h
to download a chunk. The selection of a particular chunk to
download is the base on the following events:

• WANT(k,i): B(i) of peer k is unfilled; we abbreviate this
event as W (k, i).

• HAVE(h,i): B(i) of peer h is filled; we abbreviate this
event as H(h, i).

• SELECT(h,k,i): Using the chunk selection strategy, peer
k cannot find a more preferred chunk than that of
B(i) that satisfies the WANT and HAVE conditions; we
abbreviated this event as S(h, k, i).

Therefore, we can express q(i) as:

q(i) = Pr[W (k, i) ∩ H(h, i) ∩ S(h, k, i)]
= Pr[W (k, i)] Pr[H(h, i)|W (k, i)] ×

Pr[S(h, k, i)|W (k, i) ∩ H(h, i)]. (4)

The following assumptions help us to simplify Eq. (4):

• All peers are independent: the probability of the buffer
state at the same position for different peers, p(i), are the
same. Therefore, Pr[W (k, i)]= 1 − p(i).

• There are a large enough number of peers so that knowing
the state of one peer does not significantly affect the
probability of the state at another peer. This implies that:

Pr[H(h, i)|W (k, i)] ≈ Pr[H(h, i)] = p(i).

• The chunks are independently distributed in the network.
The probability distribution for position i is not strongly
affected by the knowledge of the state at other positions.
This allows us to write the selection function as

s(i)=Pr[S(h, k, i)|W (k, i)∩H(h, i)]≈Pr[S(h, k, i)],

which is independent of the actual state at position i. As
we will show, this assumption is more accurate for some
chunk selection strategies than others.

Based on the above assumptions, Eq. (4) is:

q(i) ≈ [1−pk(i)] ph(i)s(i) = [1 − p(i)] p(i)s(i). (5)

Since each of the terms in Eq. (5) is a probability (in particular
p(i) ≤ 1 and p(i)s(i) ≤ 1), Eq. (3) becomes:

p(i + 1) = p(i) + [1 − p(i)]p(i)s(i) ≤ 1. (6)

The chunk selection strategy s(i), the focus of this study, is
discussed in the next section.

III. Chunk Selection Strategies

The simple stochastic model in the previous section set the
stage for us to model and analyze different chunk selection
strategies. We begin by considering some familiar strategies.
The first one is the “Rarest First Strategy”, which is widely
adopted in P2P file distribution protocol BitTorrent [8], [9],

and P2P streaming protocol CoolStreaming [4]. The second
one is the “Greedy Strategy” (or the nearest deadline first
strategy), and lastly the mixed strategy, which is a combination
of the above two algorithms.

By intention, a peer using the Rarest First Strategy will select
a chunk which has the fewest number of copies in the system.
To describe the Rarest First Strategy from the perspective of
the buffer B = {B(n), B(n − 1), . . . , B(1)}, let us consider
a particular peer, say peer k. From Eq. (3), we know that p(i)
is an increasing function of i, therefore p(i+ 1) ≥ p(i) for
i=1, . . . , n−1. Since peers are homogeneous, this inequality
implies that the expected number of copies of chunk in B(i+
1) is greater than or equal to the expected number of copies of
chunk in B(i). Therefore, under the Rarest First Strategy, peer
k will first select B(1) to download if B(1) is not available
in B, else peer k will select B(2) to download if B(2) is not
in the system and so on.

For the Greedy Strategy, peer k will select a chunk which
is closest to its playback deadline. From buffer B’s point of
view, B(n) is the closest to playback time, then B(n − 1) is
the next, and so on. Therefore, peer k will first select B(n)
to download if it is not available in B, else peer k will select
B(n− 1) to download if B(n−1) is not in B and so on. Note
that the Greedy Strategy seems intuitively the best strategy
for streaming at the first sight. Through our analysis, we will
show that while from a single peer’s point of view Greedy
may be the best for playback, it is often too short-sighted
from a system’s point of view, when the peer population is
large. Instead, Rarest First is very effective in maximizing
peer contribution as the population grows, hence produces
good system-wide playback performance. On the other hand,
Greedy is good in minimizing the start-up latency.

In trying to achieve the best of both worlds, we propose a new
strategy, called the mixed strategy, which is a combination of
Rarest First and Greedy. In the following subsections, we de-
rive analytical results to analyze and compare the performance
of these strategies. The key is to model the selection function
s(i) for each case, substitute it into the probabilistic model,
and derive the buffer state probability distribution.

A. Greedy Strategy

We first present the analysis of the Greedy Strategy. This
strategy aims to fill the empty buffer location closest to the
playback time first. The chunk selection function, s(i), which
is the probability of selecting B(i), can be expressed as
follows:

s(i) =
(

1 − 1
M

) j=n−1∏
j=i+1

(
p(j) + (1 − p(j))2

)
. (7)

Since the event that downloading does not occur for a buffer
at position B(j) (for j > i) is ¬(W (k, j)H(h, j)), hence, the

probability of this event is:

Pr[¬(W (k, j)H(h, j))] =
pk(j) + (1 − pk(j))(1 − ph(j)). (8)

Eq. (7) models the event that the server selects other peers to
upload, and the chunk selection does not occur for all those
positions closer to the deadline than B(i), with the buffer
position independence assumption stated earlier. Note, the first
term of Eq. (8) is the probability the local peer already has
the chunk for B(j). The second term is the probability that
the local peer does not have the chunk for B(j) and the
selected peer (h) does not have that chunk either. The rather
complicated formula for s(i) (Eq. 7) has a surprisingly simple
alternative form:

Proposition 1: The selection function s(i) for the Greedy
Strategy can be expressed as

s(i) = 1 − (p(n) − p(i + 1)) − p(1) for i = 1, ..., n − 1.

The proof is presented in the Appendix. Intuitively, it can
be understood as follows. The term (p(n) − p(i + 1)) is the
probability that any particular chunk is downloaded into buffer
positions between B(n) to B(i + 1); and the term p(1) is the
probability that any particular chunk is downloaded directly
from the server. The above expression for s(i) is thus the
probability that neither of these two scenarios are true.

Substituting the above formula for s(i) into Eq. (6), we get
the following “difference equation” for p(i):

p(i+1) = p(i)+p(i)
(
1−p(i)

)(
1−p(1)−p(n)+p(i+1)

)
for i = 1, . . . , n − 1. (9)

B. Rarest First Strategy

The Rarest First Strategy is the opposite of the Greedy
Strategy. Based on Eq. (3), we know p(i) is an increasing
function in i.3 This means the expected rarest chunk is the
latest chunk distributed by the server that is missing from the
all local peers’ buffer. So the chunk selection function s(i) for
the Rarest First Strategy can be expressed as:

s(i)=
(
1− 1

M

) j=i−1∏
j=1

(
p(j)+(1−p(j)

)(
1−p(j)

)
. (10)

The meaning of each term is similar as before. The main point
is that the search for missing chunks starts from the latest
chunk B(1), then to B(2) and so on. Again, Eq. (10) has a
simple form:

Proposition 2: The selection function s(i) for the Rarest First
Strategy can be expressed as

s(i) = 1 − p(i).

3In general, p(i) is a non-decreasing function. But for both Greedy and
Rarest First, q(i) > 0 for all buffer positions, so p(i) is an increasing function.

The proof is presented in the Appendix. The rationale for this
result is the same as that for the Greedy Strategy. The term
p(i) represents the probability that any particular chunk is
downloaded into buffer positions B(1) to B(i− 1). Therefore
s(i) as shown above represents the probability that this event
does not occur.

Again, substituting s(i) into Eq. (6), we have the following
difference equation:

p(i+1) = p(i)+p(i)
(
1−p(i)

)2

for i = 1, ..., n−1. (11)

C. Buffer Size, Peer Population and Continuity

The difference equations for p(i) in Eq. (9) and Eq. (11)
help us to derive closed-form solutions of the distribution
p(i). Also, the model allows us to derive some relationships
between the key performance metrics and design parameters
of the streaming system, these parameters are:

• n, the buffer size;
• M , the population size (or equivalently p(1), which is

equal to 1/M);
• p(n), probability that B(n) is available, which reflects

the continuity and playback performance (or ε=1−p(n)
is the probability of discontinuity).

To facilitate the derivation of these relationships, we convert
the difference equations of Eq. (9) and (11) into continuous
differential equations. They become:

dy

dx
=

y(1 − y)(y − p(1) + ε)
1 + y2 − y

;
dy

dx
= (1 − y)2y

respectively. The symbol y stands for p(i) and the symbol
x corresponds to i in the discrete case. These continuous
differential equations can be derived by substituting dy/dx for
p(i+1)−p(i)

1 and y for p(i). Based on these equations, we obtain
the following sensitivity relationships among these parameters:

Proposition 3: For the Greedy Strategy, the sensitivity of
buffer size n to peer population M (or p(1) = 1/M) and
discontinuity ε can be expressed as

∂n

∂p(1)
≈ − 1

εp(1)
;

∂n

∂ε
≈ − 1

εp(1)
. (12)

Proposition 4: For the Rarest First Strategy, the sensitivity of
buffer size n to peer population M and discontinuity ε can be
expressed as

∂n

∂p(1)
≈ − 1

p(1)
;

∂n

∂ε
≈ − 1

ε2
− 1

ε
. (13)

The proofs are included in the appendix.

Eq. (12) to (13) characterize the key difference between the
Greedy and Rarest First Strategy. These results indicate that
more buffer space is needed for larger peer population size
M (or smaller p(1)), and higher continuity (or smaller ε).
This is due to the negative gradient of n relative to p(1)
and ε respectively. But as peer population grows, the need for

additional buffer space when using the Rarest First Strategy is
1/ε times less than that for the Greedy Strategy, which means
that the Rarest First is more scalable than the Greedy strategy
as the peer population increases. On the other hand, in order
to increase continuity, the need for additional buffer space by
the Greedy Strategy is about p(1)/ε times less than that for the
the Rarest First. This means for sufficiently large p(1) (hence
sufficiently small M), the Greedy Strategy can achieve better
continuity than Rarest First. This will be illustrated in Section
IV.

D. Mixed Strategy

The intuition about the different strengths of the Greedy and
Rarest First strategies derived from our model lead us to
propose a mixed strategy that can take advantage of both of
these chunk selection algorithms.

Let the buffer B be partitioned by a point of demarcation m,
1 ≤ m ≤ n. The Rarest First Strategy is used first with buffer
spaces B(1), ..., B(m). If no chunk can be downloaded using
the Rarest Strategy, then the Greedy Strategy is used using the
other partition of the buffer, B(m + 1), B(m + 2), ..., B(n).
When m = n−1, the Mixed Strategy is the same as the Rarest
First Strategy; when m = 1, the Mixed becomes the same as
the Greedy Strategy. Through variation of m, a peer can adjust
the download probability assigned for each partition.

The buffer state probability for B(1) to B(m) satisfies the
following equations:

p(1) = 1/M,

p(i + 1) = p(i) + p(i)(1 − p(i))2 for i = 1, . . . , m−1.

The probability for B(m + 1) to B(n) can be derived from
Eq. (9) by substituting p(1) with p(m):

p(i + 1) = p(i) + p(i)(1 − p(i))
×(1 − p(m) − p(n) + p(i + 1)). (14)

Another perspective that helps us to understand the advantage
of the mixed strategy is the following observation about the
equivalence between peer population size M and buffer size
n. Consider two P2P networks. The first is a reference network
with population M , buffer size n and some chunk selection
strategy that yields buffer state distribution p(i). The second
is a baby network with a fraction of the population size equal
to 1/p(m) and buffer size n − m, that uses the same chunk
selection strategy as that used for buffer positions B(m+1) to
B(n) in the reference network. Let the buffer state distribution
of the baby network be denoted p ′(i) for i = m + 1, . . . , n.
We have the following result.

Proposition 5: The continuity for the reference network, p(n),
is equal to the continuity for the baby network, p ′(n − m).

Proof: Due the same chunk selection strategy used, q(i) in
the reference network is the same as q ′(i − m) of the baby

network4. This means p(i) = p′(i−m), for i = m+1, . . . , n,
hence p(n) = p′(n − m).

The implication of this proposition is that we should use a
mixed strategy, whenever the peer population size M relative
to the desired playback performance (continuity) is larger than
a threshold (given by p(1)/ε > 1). For the baby network
part of the buffer positions, we used the Greedy Strategy to
maximize continuity. For the rest of the buffer positions, Rarest
First is used as it is the more economical strategy (in terms
of buffer space needed) to support a large peer population.

E. Start-up Latency

So far we have focused on continuity p(n) as the performance
metric for evaluating various chunk selection strategies. From
Eq. (3) and by defining q(0)=p(1),5 we have:

p(n) =
n−1∑
i=0

q(i).

Another metric worth paying attention to is the start-up
latency. which is the time a peer should wait before starting
playback. As long as all peers cooperate by following the
same chunk selection strategy and offering downloading when
requested, a peer may choose to start its own playback
independently without affecting other peers except itself. But
what is the best start-up latency for a newly arriving peer
(with empty buffer) to choose, assuming all the other peers
have already reached steady state? We argue each peer should
wait until its buffer has reached steady state, which means:

startup latency =
n∑

i=1

p(i). (15)

When a peer starts with an empty buffer, every peer it contacts
is likely to result in a successful download. After

∑n
i=1 p(i)

time slots, the newly arriving peer is expected to have acquired
the same number of chunks as the rest of the peers in steady
state, which also equals to

∑n
i=1 p(i). If the newly arriving

peer starts with earlier, it is likely to suffer from below steady
state playback quality initially. If the newly arriving peer waits
longer (than that in Eq. (15), it will not improve its long-term
steady state playback quality.

IV. Numerical Examples and Analysis

In this section, we consider a number of numerical examples
to illustrate our results and their application to protocol design.
For each numerical example, the results can be computed in
the following ways:

4As with the rest of the results in our model, this relies on the independence
assumption to be true.

5By defining q(0) = p(1), we are treating the buffer update from server
the same as updates from peers. This is just for convenience.

Discrete model: The discrete model is given by the differ-
ence equations corresponding to the various chunk selection
strategies (Eq. 1,3,5,7,10,14). The solution for the buffer state
distribution p(i) can be derived numerically. For the Greedy
Strategy, we first give p(n) a fixed value, substitute n steps
inversely from p(n) to p(1) and then compare p(1) with
1/M . If p(1) is approximately equal to 1/M then we get
the solution; else p(n) is adjusted accordingly and the inverse
substitution process is repeated. For the Rarest First Strategy,
substitute p(i) from p(1) until p(n). For the Mixed Strategy,
we compute the first part, from 1 to m, using the same
substitution process as that for Rarest First and then compute
what is left using the same trick as that for Greedy.

Continuous model: The continuous model is given by the
differential equations in Eq. (9) and (11). In general, they can
be solved numerically using MatLab. For some relationships,
we also derived closed-form solutions.

Simulation model: We built a simulation program based on
our discrete model. There is one server and M peers. In each
time slot, the server distributes one chunk to a random peer;
each peer randomly selects only one other peer to contact and
download one chunk, but may upload at most two chunks to
its neighbors. The peers form an overlay network where each
peer is neighbor with a subset of the peers, randomly selected
from the peer population. The values of various parameters,
such as M , n, and average degree are specified as part of the
description of the experiment. The simulation model is used to
check to what extent the independence assumption may affect
the analytical models, specially in the case with small peer
population. Furthermore, simulation can produce a lot more
details about specific peer behavior and the dynamics of the
system including transient behavior.

Exp. A: Comparing Discrete and Continuous Results with
Simulation

Our first task is to compare our discrete model, the continuous
model based on the differential equation approximation, with
simulation.

In this experiment, M = 1000 and n = 40. In the simulation,
the number of neighbors for each peer is L ≤ 60. The results
are shown in Figure 2. There are two groups of curves, one for
Greedy and one for Rarest First. In each group, there are three
curves: one calculated using the discrete iterative equations,
one calculated using the approximate continuous differential
equations, and one from simulation.

We will compare Greedy and Rarest First later on. At this
point, let us focus on the accuracy of the different methods.
First, we note that the analytical results are reasonably close
to the simulation results. Secondly, we expect the discrepancy
between the discrete model and simulation is mainly due to
the independence assumption. For Greedy, there are fewer
chunks in the buffers, hence the independence assumption
is less accurate. Thirdly, we expect the discrepancy between
the discrete and the continuous models is mainly due to the

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Position in Sliding Window

O
cc

up
an

cy
 D

is
tr

ib
ut

io
n

p(
i)

Greedy-Dis
Greedy-Cont

Greedy-Sim

RF-Cont

RF-Sim
RF-Dis

Fig. 2. Buffer occupancy distribution for Rarest First and Greedy policies
from discrete, continuous and simulation models

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Position in Sliding Window

O
cc

up
an

cy
 D

is
tr

ib
ut

io
n

p(
i)

Rarest First
Greedy
Mixed

Fig. 3. Comparison of Rarest First, Greedy and Mixed

approximation of p(i + 1) − p(i) by a continuous gradient,
which happens to have a bigger effect on the equation for
Rarest First this time.

Exp. B: Comparing Rarest First, Greedy and Mixed

To compare the three chunk selection strategies, we keep the
buffer size at n = 40; and set m = 10 for Mixed (this
means the number of buffer positions running Rarest First
is 10). The results (from the discrete model) are shown in
Figure 3. The Rarest First Strategy is able to maximize the
contribution of peers, hence its buffer occupancy probability
is higher than other strategies in most buffer positions. When
using the Greedy Strategy, all peers are focusing on the short-
term playback needs; hence the buffer occupancy probability
stays low except for those positions close to the playback
position (p(n)). This has the advantage of minimizing the
startup latency as we defined in Eq. (15). For Mixed, the
buffer probability distribution is the same as Rarest First for
positions m ≤ 10, and follows the same shape as Greedy for
m > 10. By devoting a fraction of the buffer positions to
Rarest First and the rest to Greedy, the Mixed Strategy can
achieve higher continuity (than both Greedy and Rarest First)
and lower startup latency (than Rarest First).

To further compare the different strategies for different buffer
sizes, we plot the continuity and startup latency for buffer sizes

20 25 30 35 40 45 50

0.7

0.8

0.9

1

1.1

Buffer Length

C
on

tin
ui

ty

Rarest First
Greedy
Mixed

(a) Continuity versus buffer size

20 25 30 35 40 45 50
0

10

20

30

40

Buffer Length

S
ta

rt
−

up
 L

at
en

cy

Rarest First
Greedy
Mixed

(b) Start-up latency versus buffer
size

Fig. 4. Performance Results for Exp. B.

between 20 and 50 in Figure 4(a) and Figure 4(b) respectively.
It is observed that Rarest First consistently beats Greedy
in continuity. The reason is evident from our analysis and
Figure 2. Rarest First works hard at distributing new chunks
from the server, achieving a performance not far from the
theoretical limit of log2(i). The Greedy, however, is somewhat
like a procrastinator, making a great effort to fill the buffers
only near the playback time for each chunk. It is interesting
to note that the Mixed Strategy usually out-performs Rarest
First in continuity.

In terms of startup latency, Greedy and Rarest First take
opposite positions. To guarantee good playback continuity,
Rarest First occupies a significant amount of buffer space.
On the other hand, Greedy uses relatively less buffer space,
hence it takes a newly arriving peer much less time to reach
the steady state buffer occupancy. It is important to note that,
Mixed is able to keep startup latency lower than Rarest First.

Exp. C: Optimizing the Mixed Strategy

We now take a closer look at the Mixed Strategy. In the last
experiment, the parameter used to partition the buffer, m, is
a constant. Here, we fix the buffer size to be 40 and vary m.
The performance of continuity and startup latency are plotted
against m in Figure 5(a) and 5(b).

If m is large, the strategy is essentially Rarest First, hence
there is a significant startup latency. When m increases, the
startup latency decreases monotonically, and eventually the
scheme becomes sufficiently like the Greedy Strategy with low
startup latency. For continuity, it is quite interesting. There is
an optimal m when continuity is maximized. These two plots
show that there is a knee, occurring at m ≈ 10 when a balance
of high continuity and low startup latency is achieved.

Exp. D: Performance for Small Scale Networks

In here, we consider the sensitivity of buffer size to continuity
requirements and buffer size. We focus on some examples for
small population size to illustrate when Greedy can perform
better than Rarest First in terms of continuity.

There are three examples in this experiment and the result in
each case is derived from simulation (the analytical models
are less accurate for small networks). Each result is calculated
based on the average values of 3000 time slots.

0 5 10 15 20
0.85

0.9

0.95

1

Parameter m

C
on

tin
ui

ty

Rarest First
Greedy
Mixed

(a) The effect of varying m on con-
tinuity of the Mix Strategy

5 10 15 20
0

5

10

15

20

25

30

Parameter m

S
ta

rt
−

up
 L

at
ec

y

Rarest First
Greedy
Mixed

(b) The effect of varying m on
startup latency of the Mix strategy

Fig. 5. Performance Results for Exp. C.

5 10 15
0.9

0.92

0.94

0.96

0.98

Number of Peers

C
on

tin
ui

ty

Rarest First
Greedy

Fig. 6. The small network

In the first experiment, the number of peers in the network
varies from 5 to 15 and each peer sets n = 15. We compare
the continuity achieved by Greedy and Rarest First. Figure 6
shows that Greedy achieves better continuity when the number
of peers is sufficiently few relative to the value of continuity
(in this case 9), as we expect.

In the second experiment, we let the number of peers be
fixed, M = 40. However, the peers have different quality
requirements (denoted 1− ε), and have to change their buffer
length to meet the requirements. The result is shown in Figire
7(a).

In the third experiment, we let the peers’ continuity require-
ment be fixed at 0.93, but the number of peers (M) vary from
5 to 40. In order to make sure the continuity is larger than
0.93, each peer has to enlarge its buffer if the number of peers
increases. The result is shown in Figure 7(b).

0.92 0.94 0.96 0.98
0

20

40

60

80

100

Continuity

B
uf

fe
r

Le
ng

th

Rarest First
Greedy

(a) The small network with fixed
peers

5 10 15 20 25 30 35 40
10

15

20

25

30

Number of Peers

B
uf

fe
r

Le
ng

th

Rarest First
Greedy

(b) The small network with fixed
continuity

Fig. 7. Second and Third Experiments in Exp. D.

1000 1200 1400 1600 1800 2000
0.6

0.7

0.8

0.9

1

Time Slot

C
on

tin
ui

ty

Rarest First
Greedy
Mix

Fig. 8. Continuity of the Network Simulation

The results from the above two experiments are consistent with
Proposition 3 and 4, namely Greedy is able to provide a high
quality requirement with less buffer length while Rarest First
can provide good playback performance for a large number of
peers.

Exp. E: Study of Dynamics

While the analytical model is able to give us average steady
state system behavior, simulation has the advantage of giving
us the dynamic behavior of specific settings. In this experi-
ment, we simulate the case of M = 1000 and n = 40, and
look at how continuity and startup latency evolve over time.

First, we compare the continuity achieved by different strate-
gies. We simulate 2000 time slots. In each time slot, the
continuity is the average continuity of all peers, that is the
number of peers being played chunks divided by total peers.
As shown in Figure 8, Mixed not only achieves the best
continuity, but its continuity is also much more steady than
that of other two strategies.

Secondly, consider the case that a new peer with empty buffer
joins the network. Before the new peer arrives, we give 1000
time slots to let the existing (1000) peers reach steady state
first. The newly arriving peer waits for D = 16 time slots
before it starts playback. The arrival time is 1000 − D so
that playback starts at the 1000th time slot. In Figure 9(a),
we compare the playback performance of the newly arriving
peer using each of the three chunk selection strategies. The
continuity value in each case is computed as s

t−1000 where s
is the number of time slot with successful playback.

Figure 9(b) shows the number of chunks stored in the buffer of
the newly arriving peer as a function of time. From our model,
we know the average number of chunks of a peer is simply∑n

i=1 p(i). This computation yields the expected number of
chunks for each of the three strategies to be 27.4, 3.5, 15.5
respectively, which is consistent with the steady state number
achieved in the Figure. These numbers correspond to the
appropriate startup latency suitable for each strategy.

1000 1050 1100 1150 1200 1250 1300
0

0.2

0.4

0.6

0.8

1

Time Slot

C
on

tin
ui

ty

Rarest First
Greedy
Mixed

(a) Start-up latency of the Network
Simulation

1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

Time Slot

S
to

re
d

C
hu

nk
s

Rarest First
Greedy
Mixed

(b) Stored Chunks of the Network
Simulation

Fig. 9. Second Experiment in Exp. E.

0 200 400 600 800 1000
7

7.5

8

8.5

9

9.5

10

Time Slot

m
 o

f M
ix

ed

m of Mixed

(a) Average continuity as a function
of time

200 400 600 800 1000

0.92

0.94

0.96

0.98

1

Time Slot

A
ve

ra
ge

 C
on

tin
ui

ty

Rarest First
Mixed

(b) How m adapts to network dy-
namics

Fig. 10. Performance Results from Exp. F.

Exp. F: Adapting the Mixed Strategy to Peer Population

Based on our analysis and the numerical examples, we show
that the Mixed Strategy can achieve the best continuity and
low startup latency given a fixed peer population size in the
network. In reality, the peer population size is unknown and
is likely to change over time. Here we describe an algorithm
to adaptively adjust the Mixed Strategy’s m to the network
dynamics.

In the previous experiments, m is fixed (at 10). One way to
adapt m is by observing of the value of p(m). We can set
a target value for p(m), say pm = 0.3. When a peer finds
the average value of p(m) is less than pm, the peer increases
m, else the peer decreases m. In our simulation, every peer
calculates the average value of p(m) for 20 time slots and then
decides the value of m based the average value.

We conduct the following experiment. Let there be 100 peers
in the network initially. After every 100 time slots, another
100 new peers with empty buffer are added to the network,
which means there are i × 100 peers in the network after
i × 100 time slots. For all the peers, the initial value of m
is 10. We calculate the average continuity and average value
of m for the initial 100 peers in the network as a function
of time. From Figure 10(a) and 10(b), we observe that the
average value of m (of the 100 tagged peers) adapts to the
increasing peer population. Furthermore, the continuity of the
Mixed Strategy is quite steady (except a glitch between time
slot 700-800) compared to that of Rarest First.

V. Application to Real-world Protocols

In this section, we briefly discuss the applicability of the Mixed
Strategy in real P2P streaming protocols. There are two points
we would like to make.

First, the Mixed Strategy can be viewed as an optimization of
the CoolStreaming protocol. Although our analytical model
does not try to capture all aspects of the implementation of
CoolStreaming, our chunk selection strategy can be easily
incorporated into that protocol as an improvement of the
existing algorithm. This makes us quite confident about the
practical utility of our results, in addition to the insights we
get from the model.

Second, the Mixed Strategy is also compatible with BiTos, and
can be viewed as an alternative (very likely enhancement) of
BiTos. Since p(m) =

∑m−1
i=0 q(i), we can make our algorithm

quite similar to BiTos which uses a probability p for high
priority buffer positions and (1 − p) for the rest. In fact, as
we explained in the last section, we can implement the Mixed
Strategy by using a fixed probability for the Rarest First part
of the buffer, allowing m to adapt to a suitable value for
the prevailing peer population. There is a subtle difference
between the Mixed Strategy and BiTos: the latter uses Rarest
First for both high priority and low priority chunks whereas
we use Greedy for our high priority chunks.

VI. Conclusion

The art of modeling is on the one hand to capture the essential
aspects of the original system, and on the other hand to
be simple enough to yield some insights about the original
system. We feel that is what our model accomplished for
the P2P streaming problem. In addition, the insights from
our model also lead to some practical algorithm that can be
incorporated into well established systems as improvements.

There are a number of interesting directions for further studies.
We believe the simple probability model can be extended to
analyze other chunk selection and peer selection algorithms.
Additional experimentation and prototyping would also help
further validate our ideas.

REFERENCES

[1] P. Francis, “Yoid: Extending the internet multicast architecture,” in
http://www.icir.org/yoid/docs/index.html, 2000.

[2] Y. hua Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
in IEEE J on Selected Areas in Communications, 2002.

[3] J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and challenges
of peer-to-peer internet video broadcast,” in (invited) Proceedings of
the IEEE, Special Issue on Recent Advances in Distributed Multimedia
Communications, 2007.

[4] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Coolstreaming/donet: A
data-driven overlay network for efficient live media streaming,” in Proc.
INFOCOM, 2005.

[5] M. Zhang, L. zhao, Y. Tang, J.-G. Luo, and S.-Q. Yangt, “Large-
scale live media streaming over peer-to-peer networks through global
internet,” in International Multimedia Conference Proceedings of the
ACM workshop on Advances in peer-to-peer multimedia streaming,
2005.

[6] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “Bitos: Enhancing bit-
torrent for supporting streaming applications,” in INFOCOM 25th IEEE
International Conference on Computer Communications. Proceedings,
2006.

[7] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and X. Zhang,
“Delving into internet streaming media delivery: A quality and resource
utilization perspective,” in Internet Measurement Conference Proceed-
ings of the 6th ACM SIGCOMM on Internet measurement, 2006.

[8] R. S. Dongyu Qiu, “Modeling and performance analysis of bittorrent-
like peer-to-peer networks,” in ACM SIGCOMM, 2004.

[9] B. Fan, D. M. Chiu, and J. C. Lui, “The delicate tradeoffs in bit torrent-
like file sharing protocol design,” in ICNP, 2006.

[10] G. Wu and T. cker Chiueh, “How efficient is bittorrent?” in Proceedings
of SPIE – Volume 6071 Multimedia Computing and Networking, 2006.

[11] Y. Cui and K. Nahrstedt, “Layered peer-to-peer streaming,” in Proc. 13th
ACM NOSSDAV. New York: ACM Press 162-171, 2003.

[12] S. Tewari and L. Kleinrock, “Analytical model for bittorrent-based live
video streaming,” in Proceedings of IEEE NIME Workshop, Las Vegas,
2007.

[13] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin, “A hierarchi-
cal characterization of a live streaming media workload,” in IEEE/ACM
Transactions on Networking, 2006.

[14] C. Wu and B. Li, “Optimal peer selection for minimum-delay peer-
to-peer streaming with rateless codes,” in Proc. of ACM Workshop on
Advances in P2P Multimedia Streaming, 2005.

[15] T. Small, B. Liang, and B. Li, “Scaling laws and tradeoffs of peer-to-
peer live multimedia streaming,” in Proceedings of ACM Multimedia,
2006.

[16] L. Massoulie and M. Vojnovic, “Coupon replication systems,” in ACM
Sigmetrics, 2005.

Appendix

Proof of Proposition 1: From Eq. (6), we have

p(i + 1) − p(i) = s(i)p(i)
(
1 − p(i)

)
.

From Eq. (7), we have

s(i + 1) − s(i) = s(i + 1)p(i + 1)
(
1 − p(i + 1)

)
.

Note the right-hand-side of the above two equations are the
same, except the index i versus i + 1. This means

s(i + 1) − s(i) = p(i + 2) − p(i + 1),
n−2∑
j=i

(s(j + 1) − s(j)) =
n−2∑
j=i

(p(j + 2) − p(j + 1)),

s(i) = s(n − 1) − p(n) + p(i + 1).

From the equation of s(i) (Eq. 7), we get s(n−1) = 1−1/M .
Therefore, we have s(i) = 1 − p(1) − p(n) + p(i + 1).

Proof for Proposition 2: Again, from Eq. (6), we have

p(i + 1) − p(i) = s(i)p(i)
(
1 − p(i)

)
.

From Eq. (10), we have

s(i + 1) − s(i) = s(i)p(i + 1)
(
p(i + 1) − 1

)
.

This time, the right-hand-side of these equations are again the
same except the sign (and index off by 1). This gives us

s(i + 1) − s(i) = −
(
p(i + 1) − p(i)

)
,

i−1∑
j=0

(s(j + 1) − s(j)) = −
i−1∑
j=0

(
p(i + 1) − p(i)

)
,

s(i) = s(1) + p(1) − p(i).

When there are M peers in the network, p(1) = 1/M , which
is the probability the sever selects it for sending the newest
chunk. From Eq. (10), we have s(1) = 1 − 1/M . Therefore,
we have s(i) = 1 − p(i).

Proof of Proposition 3: Assume ε = 1−p(n) and ε−p(1) �=
0, which covers all the chunk selection strategies we are
interested in. We get the following solution for the differential
equation:

x =
ln

(
y

y+ε−p(1)

)
ε − p(1)

+
ln

(
y+ε−p(1)

1−y

)
1 + ε − p(1)

− ln(y + ε − p(1)) − C.

Here C is a constant that can be derived from the boundary
condition y = p(1) = 1/M :

C =
ln(p(1)

ε)
ε − p(1)

+
ln(ε

1−p(1))

1 + ε − p(1)
− ln(ε) − 1.

Solving the above equation, we can express n, the buffer size,
in terms of the other parameters p(1) and ε:

n=
ln

(
(1−p(1))p(1)

(1−ε)ε

)
p(1) − ε

+
2 ln

(
1−p(1)

ε

)
1 + ε − p(1)

+1+ln
(ε

1 − p(1)

)
.

Although n is an integer, we can still study its sensitivity
with respect to p(1) and ε by differentiation, which yields the
results in the Proposition.

Proof of Proposition 4: With a similar method as in the proof
for Proposition 3, we derive the solution for the differential
equation for the Rarest First algorithm:

x =
1

1 − y
+ ln

(y

1 − y

)
− C,

C = ln
(p(1)

1 − p(1)

)
+

p(1)
1 − p(1)

.

Again, p(1) and ε represent the number of peers and the
streaming quality respectively, and y(n) = 1 − ε. Similarly,
we express n as a function of p(1) and ε:

n =
1
ε

+ ln
(1 − ε

ε

)
− ln

(p(1)
1 − p(1)

)
− p(1)

1 − p(1)
.

Differentiating, we get the results in the Proposition.

