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Abstract—Data imbalance is common in many vision tasks
where one or more classes are rare. Without addressing this
issue conventional methods tend to be biased toward the majority
class with poor predictive accuracy for the minority class. These
methods further deteriorate on small, imbalanced data that has
a large degree of class overlap. In this study, we propose a novel
discriminative sparse neighbor approximation (DSNA) method
to ameliorate the effect of class-imbalance during prediction.
Specifically, given a test sample, we first traverse it through a
cost-sensitive decision forest to collect a good subset of training
examples in its local neighborhood. Then we generate from this
subset several class-discriminating but overlapping clusters and
model each as an affine subspace. From these subspaces, the
proposed DSNA iteratively seeks an optimal approximation of the
test sample and outputs an unbiased prediction. We show that
our method not only effectively mitigates the imbalance issue, but
also allows the prediction to extrapolate to unseen data. The latter
capability is crucial for achieving accurate prediction on small
dataset with limited samples. The proposed imbalanced learning
method can be applied to both classification and regression tasks
at a wide range of imbalance levels. It significantly outperforms
the state-of-the-art methods that do not possess an imbalance
handling mechanism, and is found to perform comparably or
even better than recent deep learning methods by using hand-
crafted features only.

Index Terms—Imbalanced learning, decision forest, discrimi-
native sparse neighbor approximation, data extrapolation.

I. INTRODUCTION

ATA imbalance exists in many vision tasks ranging from

low-level edge detection [1] to high-level facial age
estimation [2] and head pose estimation [3]. For instance, in
age estimation, there are often many more images of the youth
than the old on the widely used FG-NET [2] and MORPH [4]
datasets. In edge detection, various image edge structures [5]
obey a power-law distribution, as shown in Figure 1. Without
handling this imbalance issue conventional vision algorithms
have a strong learning bias towards the majority class with
poor predictive accuracy for the minority class, usually of
equal or more interest (e.g., rare edges may convey the most
important semantic information about natural images).

The insufficient learning for the minority class is due to
the complete lack of representation by a limited number of
or even no examples, especially in the presence of small
datasets. For instance, FG-NET age dataset has 1002 images
in total with only 8 images over 60 years old. Certain age
classes of 60+ ages have no images at all. This reveals a
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Fig. 1. Data imbalance in (a) age estimation and (b) edge detection. In

existing age datasets, there are usually more images of the youth than the old
(>60 years old). While in image edge datasets, the observed edge patches
typically obey an imbalanced power-law distribution. Moreover, the numbers
of collected edge and non-edge patches are usually equal, which leads to a
severe imbalance between each edge class and the non-edge class.
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Fig. 2. 2D distributions of age data after PCA and LDA on FG-NET dataset.
They show the dataset is not only small and class-imbalanced, but also has
the class overlap issue. Such issues just compound the learning difficulty.

bigger challenge on unseen data extrapolation from the few
minority class samples that usually have high variability. Even
worse, the small imbalanced datasets can be accompanied
by the class overlap problem. We plot the PCA and Fisher
embeddings of FG-NET in Figure 2 to illustrate this problem.
From the figure, it is evident that training a robust classifier
or regressor capable of handling old ages is indeed a hard
problem: (i) the corresponding minority class (blue star)
contains insufficient samples for learning, (ii) these samples
have high degree of variability which is hard to model, (iii)
there is a severe class overlap between the rare samples and
those from majority classes, further compounding the learning
difficulty. Consequently, if we look into the local neighborhood
of a minority class sample, it is very likely to be dominated
by the majority class samples. Its weak local boundary would



bias the prediction towards the majority class.

There are three common approaches to counter the neg-
ative impact of data imbalance: resampling [6], [7], cost-
sensitive learning [8]-[10] and ensemble learning [11], [12].
Resampling approaches aim to make class priors equal by
under-sampling the majority class or over-sampling the mi-
nority class (or both [6]). These methods can easily eliminate
valuable information or introduce noise respectively. Cost-
sensitive learning is often reported to outperform random re-
sampling by adjusting misclassification costs, however the true
costs are often unknown. An effective technique for further
improvement is to resort to ensemble learning [13]. Chen et
al. [11] combined bagging and weighted decision trees to
generate a re-weighted version of random forest. We show in
our experiments that the aforementioned strategies fall short in
handling complex imbalanced data. Beyond empirical perfor-
mance, the above approaches have two common drawbacks: 1)
They are designed for either classification [6]—[8], [10]-[12]
or regression [9] without a universal solution to both. 2) They
have a limited ability to account for unseen appearances or
extrapolate novel labels on the observed space. This is critical
in the typical case of small imbalanced datasets where the
minority class is under-represented by an excessively reduced
number of or even no samples/labels.

In this paper we address the problems of data imbalance and
unseen data extrapolation using a data-driven approach. The
approach can be applied to both classification and regression
scenarios. The key idea of our approach is intuitive — given a
test sample, we first locate for it a ‘safe’ local neighborhood.
This local neighborhood is formed by training samples, which
are carefully mined so as to provide a relatively large coverage
of minority class samples in the full space. But overall, this
subspace is tight and is less probable to be invaded by imposter
samples!. We show that this ‘safe’ local neighborhood can
be constructed via a cost-sensitive decision forest. It is worth
noting that the local neighborhood may still be overwhelmed
by majority classes especially when the minority ones are
absolutely rare. Thus prediction by simple voting or averaging
within it could easily smooth out the minority class samples.
To this end, we further partition the local neighborhood into
several discriminative but soft clusters. This process provides
purer clusters eliminating the undesired class domination.

We propose a new Discriminative Sparse Neighbor Ap-
proximation (DSNA) method that allows robust prediction
from our formed clusters. The clusters are modelled as affine
subspaces to account for unseen appearances in a similar spirit
of [14]. The core of DSNA is a new cost function and a joint
optimization approach to iteratively determine the best affine
subspace that best approximates the test sample with the help
of associated sparse neighbors. From the found neighbors and
their approximating coefficients, we can transfer their labels
to achieve a robust prediction under the class-imbalanced
scenario. Figure 3 illustrates the effectiveness of DSNA in
an age estimation example.

In summary, the main contributions of this paper are:

! An imposter sample is defined as the one from a different class w.r.t. the
test sample.
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Fig. 3. A visualization of age estimation result when neither the testing ap-
pearance nor age label is observed during training. Averaging provides a crude
way of estimating the face appearance (AAM, Active Appearance Model)
from the nearest neighbors in the training set. The proposed discriminative
sparse neighbor approximation (DSNA) provides a more robust estimation,
thus an age value closer to the Ground Truth (GT).

o A new discriminative sparse neighbor approximation (D-
SNA) method is proposed for unbiased predictions with
preserved discriminative and extrapolative ability given
class-imbalanced data.

« To facilitate robust predictions via DSNA, we formulate
an effective way of constructing a safe local neighorhood
through a cost-sensitive decision forest framework.

o The proposed method is applied to the vision tasks of age
estimation (regression), head pose estimation (regression)
and edge detection (classification) with varying degree
of data imbalance and amount of data. It advances the
state-of-the-art, sometimes considerably, across all tasks
especially on highly imbalanced ones. It comes at only
modest extra computational burden, showing its potential
as a fast and general framework for imbalanced learning.
Our results are particularly impressive when favorably
compared to deep learning methods [15]-[22] as our
method uses no deep features, but introduces the imbal-
ance handling mechanism absent in these deep models.

The rest of the paper is organized as follows. Section
IT briefly reviews related work on imbalanced learning and
the considered vision tasks. Section III details the major
components of the proposed method. Section IV presents the
results on imbalanced vision and generic datasets, as well as
the runtime analysis. Section V concludes the paper.

II. RELATED WORK

Much effort for imbalanced learning in the machine learning
community has been devoted to resampling approaches [7]
that randomly under-sample the majority class or over-sample
the minority. Other smart resampling techniques are also
available (please refer to [7] for a comprehensive survey).
Generally under-sampling may remove valuable information
and over-sampling easily introduces noise with overfitting
risks. Additionally, random over-sampling does not increase
information by only replication, so it does not solve the fun-
damental “lack of data” issue. SMOTE [6], on the other hand,
creates new examples by interpolating neighboring minority
class instances. However, it is error-prone to interpolate noisy
or borderline examples. Therefore under-sampling is often
preferred to over-sampling [8], but is not suitable for small
datasets (e.g., FG-NET) because of the information loss.

Cost-sensitive learning [8]-[10] as an alternative is closely
related to resampling. Instead of manipulating samples at the
data level, it adjusts misclassification costs at the algorithmic



level and imposes heavier penalty on misclassifying the minor-
ity class. For example, Li and Lin [9] proposed RED-SVM to
use the label-sensitive costs in the ordinal regression problem.
Zadrozny et al. [10] combined cost sensitivity with ensemble
approaches to further improve classification accuracy. Chen et
al. [11] formed an ensemble of cost-sensitive decision trees
by weighting the Gini criterion during the node splitting and
final tree aggregation. We similarly grow cost-sensitive but
more generalized and principled random trees, and propose
a discriminative and extrapolative “aggregation” scheme that
proves necessary for complex imbalanced data.

The above methods in [10], [11] already show the effec-
tiveness of classifier ensemble in the context of data imbal-
ance [11], [12]. Bagging and Boosting are the most popular
ensemble strategies [13]. Generally, Boosting (e.g., [12], [23])
can easily embed the cost sensitivities in example weights
according to the misclassification costs. Li et al. [23] further
combined boosting with the training of an extreme learning
machine. But boosting is vulnerable to noise and is more prone
to overfitting, which can be better addressed by Bagging [13].
Our method based on the improved random forest is essentially
a Bagging method, thus shares its advantages.

Age estimation: There are three main groups of age estimation
methods: classification [2], [24], [25], regression [9], [26]-
[29], and ranking [4], [30], [31] methods. OHRank [4], [31]
surpasses previous classification- and regression-based meth-
ods by utilizing ordering information and cost sensitivities.
However, the imbalance issue is neglected especially when
designing ordered classifiers at the youngest and oldest ages.
Some recent works focus on advanced feature extraction [24],
[31], [32], including applying convolutional neural network
(CNN) [15], [16] to automatically learn deep features instead
of using hand-crafted ones. Unfortunately strong biases are
still observed on imbalanced datasets, and we provide here
an explicit solution to imbalanced learning with better results,
using no deep features. Only three papers [29], [33], [34], as
far as we know, consider data imbalance and sparseness when
estimating ages. ISRCA [29] simply balances the number of
nearest neighbors from each class to compute the similarity
matrix for LPP (Locality Preserving Projection). In [33],
[34], the imbalance is only mitigated by leveraging adjacent
labels in implicit ways, respectively via modeling cumulative
attribute space and label distribution. We will show the advan-
tages of our explicit imbalanced learning mechanism and the
extrapolative mechanism for possible missing data/labels.
Head pose estimation: Methods for head pose estimation
from 2D images can be categorized into two main groups: clas-
sification [35] and regression [36]-[40], with regression being
more attractive for its continuous output. We refer readers
to [41] for a comprehensive survey. Random forest is a popular
choice for pose estimation in both classification [35] and
regression [39] settings. It is also applied to depth images [42].
To our knowledge, the inherent imbalance in pose data [3] is
seldom addressed again. Note on many pose datasets such
as Pointing’04, the sparse data sampling (with typical pose
intervals of 10°+) makes learning even more difficult.

Edge detection: State-of-the-art edge detection methods [1],
[5], [43]-[48] mostly use engineered gradient features to clas-

sify edge pixels/patches. Recent CNN-based methods [17]-
[22] achieve top results by learning deep features. Due to the
large variety of edge structures, it is usually hard to learn
an ideal binary classifier to separate edges as one class from
the non-edge class. Therefore some methods first cluster edge
patches into compact subclasses (e.g., [5], [20]), and cast
edge detection as a multi-way classification problem (i.e., to
predict whether an input patch belongs to each edge subclass
or the non-edge class) so as to implicitly solve the binary
task. And the numbers of “positive” and “negative” patches are
commonly set equal to facilitate the binary goal. However, this
results in a severe imbalance between each edge subclass and
the dominant negative one (see Figure 1(b)), which is barely
addressed properly by the above methods. Consequently, bi-
ased predictions tend to occur with low edge recall or damage
of fine edge structures in those rare subclasses.

Another limitation of existing methods is that they cannot
well predict the unseen edge structures from a novel class. For
example, Sketch Tokens [5] only predict from a pre-defined set
of edge classes based on random forest. Structured Edge (SE)
detector [44] can model more subtle edge variations in a struc-
tured forest framework without the finite-class assumption, but
still can only infer the edge structures observed during training.
Although this problem is ameliorated by merging predicted
structures while testing, it is in sharp contrast to our explicit
DSNA method that empowers random forests to extrapolate.

III. METHODOLOGY

The proposed discriminative sparse neighbor approximation
(DSNA) aims to provide unbiased predictions given a class-
imbalanced dataset. More precisely, given a training set D =
{s: = (:ci,yi)}ﬁil, where x; € RP is the feature vector of
sample s; and y; the label, our problem can be formulated as
learning a function F'(x) — y to make unbiased predictions
from severely imbalanced datasets. The label y € C refers to
the class index (e.g., edge class) for classification or a numeric
value (e.g., age and pose angle) for regression.

For a query q, the key steps of DSNA are: 1) to draw a well
localized neighborhood of training data that is less probable
to be invaded by imposter samples, 2) then follow the “divide
and conquer” idea to perform a class-discriminative local
clustering to obtain clusters (modeled as affine subspaces)
without undesired class domination, 3) and finally choose the
best cluster to make unbiased predictions.

The overall pipeline is shown in Figure 4. The pipeline
begins with a cost-sensitive random decision Forest (CS-RF),
which takes care of generating an initial good local neighbor-
hood at leaf nodes, in order to reduce unnecessary distractions
from unrelated samples. We retrieve all the leaf samples for
a test instance, aiming to gain as more coverage of relevant
minority samples as possible. The DSNA component starts
with discriminative local clustering, and performs a sparse
approximation to iteratively output unbiased predictions. To
enable extrapolative prediction for unseen appearances, we
model the found clusters as affine subspaces in order to
extrapolate from them.

In the following, we first present the DSNA approach which
is the key of this paper. We make the assumption that local
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Fig. 4. The overall pipeline of our CS-RF-induced DSNA method.

neighborhood of training data is already available. We then
describe the use of cost-sensitive random decision forest to
obtain such local neighborhood.

A. Discriminative Sparse Neighbor Approximation

Discriminative local clustering - The first step of DSNA
is to perform discriminative clustering within the local data
neighborhood of a test sample. Suppose we have an initially
retrieved local data neighborhood at hand, which can be
noisy and class-imbalanced. This local neighborhood can be
represented as

R={si}l,, (1)

Intuitively, the samples in R are close to the test sample
based on some notions of metric or non-metric distance. Our
objective is to separate the samples in R based on their
different class labels so as to pave the way for unbiased
prediction of the test sample. We shall choose a clustering
technique that possesses two desirable properties to achieve
this goal: 1) It should generate discriminative clusters from
one of which unbiased predictions can be made. 2) The found
clusters should have adequate descriptiveness to account for
unseen data patterns.

We achieve the aforementioned goal through a simple yet
effective extension of K-means. It differs from the standard K-
means in two respects. First, the inter-point distance d (x;, ;)
between x; and x; is label-aware:

RcD, M<N.

a( ) d(x;,x;) * 1 (y; # y,) for classification,
T, T;) = .

D= \d(wi,25) % 9 (g5 — y3l)  for regression,
where d(-,-) is the Euclidean distance, 1(-) is an indicator

function, g(y) = 7y/(max{y} — y + eps) is a reciprocal
increasing function with 7 the trade-off parameter, and eps
a small positive number to prevent overflow. The label-aware
distance makes clustering discriminative by preferring the
“same-class” data-pairs over those from different classes. In
the extreme case, under classification scenarios for example,
it forms clusters {L£;}5_, each purely from one class even
when the cluster members differ remarkably in appearances,
which is suitable for classification.

Considering it is highly possible that the “pure” clusters in
small imbalanced problems have limited samples, especially
those mostly with the minority class samples, such clustering
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is actually not desirable for data/label extrapolation purposes.
Hence, we allow cluster overlap by relaxing the cluster assign-
ment of sample x;. Instead of assigning it solely to the nearest
cluster centroid, we choose more than one centroids with
distances slightly larger than the minimum distance in each
K-means optimization iteration. This results in overlapping
clusters each containing some “inter-class” samples. Such
samples have complementary appearances to those ‘“‘same-
class” ones for enriching cluster representations.

Sparse neighbor approximation - The previous step gen-
erates K overlapping clusters {L;}& , with their feature
matrices { L}/, and labels {y;}/_,. Our problem becomes
how to discriminatively predict the label of a query g and
extrapolate to its possibly unseen appearance simultaneously.
To address this problem, we model each cluster by an affine
hull model A, [14] that is able to account for unseen data of
different modes, and then choose the best prediction returned
by them. Every single A, covers all possible affine combina-
tions of its belonging samples and can be parameterized as:

3)

where pug, Zmieﬁk x;/|Lk| is the centroid, Uy is the
orthonormal basis obtained from the SVD of centered Ly,
and vy, is the coefficient vector.

Note that to predict the class label of query q, we still need
to know which cluster the query should be assigned to, and
the cluster index k in Eq. 3 remains unknown. To this end,
we formulate a joint optimization problem for simultaneuously
finding the belonging cluster of the query and its affine hull
approximation:

Ap ={z = pp + Upv,k =1,... K},

min ||py + Upvr — Loy + A laglly + 7 [loe — ol

k,vk, o
4)

s.t. |lg — (pe + Upvp)||, < e,

where € > 0, and )\ and v are regularization parameters.

We explain the objective function as follows:

First term - This term approximates g over the k' cluster
using the cluster’s affine subspace as well as the feature matrix
of associated member samples Lj. This term is motivated by
affine hull models [14] but differs significantly in the following
aspects:

1) the affine space is class-aware. In particular, the affine space
is learned from our class-discriminating cluster. A class-aware



sparsity constraint is further imposed to promote discrimina-
tion (Third term).

ii) the affine space approximation benefits from the enriched
descriptiveness of overlapping clusters.

Second term - This term constrains the loose affine approxi-
mation by imposing sparsity among the cluster samples. Thus
a large drift is avoided when extrapolating g on the affine
subspace, because we constrain the affine subspace to be near
to the observed samples using feature matrix Ly.

Third term - This term regularizes the coefficient vector oy,
to make it focus more on the “same-class” nearest neighbors,
Ny = {xz; € Ly, : d(x;,q) < e}, which are found by using
the class-aware distances in Eq. 2. From our experiments, we
empirically found that this term is useful to provide stable
predictions. Formally, the @, is estimated as:

Q= Y  wio, w; x exp(—d(z;, q)/h), &)
ziGNk

where h is the decay parameter, and «; is the representation
coefficient of the i*" neighbor with the i*" element equal to
one and the rest zero.

Eq. 4 can be solved by alternatively seeking the best affine
approximation miny , ||g — (px + Urvyi)||, and the sparse

neighbor approximation with two [/;-norms:
min [lg — Lyol, + Aflally + v llow —ally,  6)

which can be efficiently solved by using the Augmented
Lagrange Multiplier (ALM) method [49].

With the converged &, the label for q is finally predicted
as § = ygdk for regression or by majority voting for
classification (in this case we determine the nonzero entries of
thresholded &y, and vote among the corresponding yy). The
initial label in the iterative process is the mean or majority
vote of yj, in the best-fit cluster.

B. Cost-Sensitive Random Decision Forest

Returning to the initial step of finding a ‘safe’ local neigh-
borhood, we choose random decision forest for its efficiency
and robustness. We first traverse a test example through
every trained decision tree and retrieve the respective training
samples R; stored at the leaf node. Traditional random forest
calculates either a class distribution for classification or a local
mean for regression from each R, and aggregates them as
the final prediction. We face two fundamental problems by
doing so: in the case of absolute rarity, each R; will still
predominantly consist of majority classes that make simple
aggregation biased to them; or R; may form pure but small
disjuncts [7] of minority class samples leading to overfit.

Therefore, we instead merge all the retrieved leaf sample
sets {R;} into a single one R = U;R;, and treat R as our
initial local neighborhood in Eq. 1. Then DSNA is applied for
prediction as described in Section III-A. Such simple merging
helps our data-driven method to gain as more coverage of
relevant minority samples as possible. This can be easily sat-
isfied thanks to the diversities between different trees. In fact,

random forest has the proved upper bound of generalization
error given by [13]:

e < p(1—m?)/m?, @)

where m is the strength of individual trees and p is the
correlation between decision trees. Hence in order to maintain
the low correlation and diversity among trees, we just keep
the Bagging nature and feature randomness at internal nodes
as in standard random forest.

To make the merged neighborhood less distracted by im-
poster samples, we focus on improving the strength m of each
tree in the context of data imbalance by making the tree cost-
sensitive. We have explored different cost-sensitive schemes,
such as the re-weighting of nodes as in [11] and boosting of
trees with class costs, but seen marginal effects. We finally
came to a modified node splitting rule that can not only take
into account the imbalanced distribution, but also can work
seamlessly for both classification and regression.

Specifically, we first follow the standard Bagging procedure
to grow an ensemble of random trees. Each tree recursively
divides the input space into disjoint partitions in a coarse-to-
fine manner. The key is to design good splitting functions. For
a node j with local samples S;, a binary function ¢; : RP "
{0,1} is trained on randomly sampled features (D’ = /D)
and splits into Sjl- and S} to maximize the information gain:

!l Sy
I(Sj.65) = H(S)) — | o H(S) + a7 H(S)) |, (®)
155 |55
where H(-) denotes the class entropy. For regression, in-
formation gain can be replaced by the label variance as
H(S) = 3, (y — w)?/|S| where o = 3=, y/|S|. Training
stops when a maximum depth is reached or if information
gain or local sample size |S;| falls below a fixed threshold.

The standard node splitting function ¢; is not necessarily
optimal with respect to imbalanced data. To alleviate this
problem, in both classification and regression scenarios, we
incorporate a cost function f(-) > 0 into ¢; that penalizes
more heavily on the minority class.

In classification trees, we first apply the widely used K-
means technique [39], [44] to cluster S; into {S]’?}zzl, and
then the splitting function ¢; that best preserves the two
clusters is determined by a cost-sensitive version of linear
SVM:

2
rrgn llwl|, + CZ f(pr) Z (maz(0,1 — zin:cZ-))2 ,
k=1 sz{Sf}
€))
where pi, = \S]’“ |/|S;| denotes the cluster proportion, w is the
weight vector, C' is a regularization parameter, and z; = 1 if
T; € SJ1 and -1 otherwise. Each sample is finally sent to either
S]l- or S7 by sgn(wTx;). The resulting splitting function is
thus learned in a cost-sensitive manner instead of being chosen
from some predefined splitting rules. Note the cost here is
defined as a function of the cluster distribution rather than the
targeted class distribution, but they will correlate well at the
deeper tree depth with much purer nodes where Eq. 9 can
better play its role.



Algorithm 1 : CS-RF-Induced DSNA

Input: Training set {(ml,yl)}f\il, trained CS-RF, query q.
Initialization: to predict y of g
e Merge for g all its reached leaf samples to R.
e Via Discriminative Local Clustering, obtain clusters
{Li}HE |, features {Lj} | and labels {y; 5 ;.
e Set 4y(0) as the mean of v, for regression or its majority
vote for classification in A, that best approximates q.
Outer Loop: Iterate on ¢ = 1,...,T until convergence
e Update {k:(t_l),v,(ffl)} by Eq. 3 as the ones that best
approximate q.
e Update the sparse coefficient estimate a,(j’l) by Eq. 5.
e Update a,(ffl) via Sparse Neighbor Approximation by
minimizing Eq. 6.
e Predict label y®* = y,zja,(ffl) or by majority voting
among y;, with nonzero coefficients.
QOutput: Converged label 3.

In regression trees, we perform a cost-sensitive regression
at each node S; using a weighted linear SVR:

min [wll, +C > ) Y (maz(0,ly: — wzi| — <))’
yece o 8

(10)
where € > 0, and we directly penalize the true label distribu-
tion {p, = {yi =y, z; € S;}|/|S;|} as costs. The node then
branches left if the numeric prediction {w” x;} is smaller than
the local mean of labels >, s ¥i/|S;|. otherwise branches
right.

In practice, we use the cost transformation technique in [4]
to solve the above weighted SVM/SVR. The cost func-
tion f(-) is defined by a reciprocal decreasing function as
f(p) = (1 — p)/p. Obviously, f(p) gives larger weights to
the minority classes which proves effective to improve their
prediction accuracies without losing the overall performance
in our experiments. In addition, we use the inverse class
frequencies to reweight the information gain (Eq. 8, as in [11])
to select the best D’ random features in both classification and
regression trees. The result is a CS-RF framework able to carve
reasonably good local neighborhoods for both the majority and
minority classes.

C. Convergence and Complexity

Our full algorithm is detailed in Algorithm 1. Similar to
the affine hull (AH) method [14], Algorithm 1 can converge
to a global solution. Compared with AH’s non-asymptotic
convergence rate of O(1/t%), our DSNA method converges
even faster as shown in Figure 5. Typically DSNA converges
within 10 iterations with lower objective values thanks to
the introduced class discrimination as a guidance. In our
experiments, we will visualize some converged examples with
accurate predictions in different vision tasks.

IV. EXPERIMENTS

We validate the effectiveness of our CS-RF-induced DSNA
method in three vision tasks at various imbalance levels: the

—— AH [14]
5 —— DSNA

Objective Function Value
w

0 5 10 15 20 25 30 35 40 45
Iteration

Fig. 5. Comparison of the convergence of unsupervised AH [14] and our
DSNA given a query in the age estimation task.

age estimation and head pose estimation tasks (by regression)
and the edge detection task (by classification).

A. Experimental Settings

Dataset settings: For age estimation, the FG-NET [2] and
MORPH [4] datasets are used. FG-NET contains 1002 facial
images of 82 subjects with ages in a range from 0 to 69. Al-
gorithms are evaluated by the leave-one-person-out protocol.
MORPH contains about 55000 images of more than 13000
subjects with ages between 16 and 77. We randomly split it
into three disjoint subsets S1, S2 and S3 as in [16]. Algorithms
repeat 1) training on S1, testing on S2+S3 and 2) training on
S2, testing on S1+S3 with the average result reported. Both
datasets are highly imbalanced (see Figure 1(a)) and class-
overlapped. FG-NET further suffers from the issue of small
data. For both, we use AAM [50] as the feature extractor, and
Mean Absolute Error (MAE) as the evaluation metric.

For head pose estimation, poses should intrinsically admit
an imbalanced distribution with much more near-frontal in-
stances than the profile ones. Unfortunately, we are unable to
obtain such datasets with ground truth labels (e.g., “Face Pose”
dataset [3]) for experiments. We instead adopt the popular
Pointing’04 dataset that exhibits some imbalance in pitch
angles. The dataset contains images from 15 subjects each
with two series of 93 pose images. The pose is discretized
into 9 pitch angles {490°, £60°, £30°, +15°,0°} and 13 yaw
angles {£90°, £75°, +60°, £45°, £30°, +15°, 0°}. However,
when the pitch angles are {£90°}, the yaw is always {0°} (so
7x 1342 = 93 poses in total), leading to an imbalance ratio of
1:13 between {£90°} pitch angles and other pitch angles. We
further test when pitch angles are randomly removed to form a
Gaussian-like distribution to mimic the real-world imbalanced
distribution. As in [38], [39], evaluation of MAE is performed
with 5-fold cross-validation using HOG features.

For edge detection, we use the BSDS500 [1] and NYUD
(v2) [51] datasets, the latter for testing cross-dataset general-
ization. BSDS500 contains 200 training, 100 validation and
200 testing images. NYUD contains 1449 pairs of RGB and
depth images. We follow [46] to use 60%/40% training/testing
split (1/3 training data for validation) with the images reduced
to 320 x 240 pixels. For cross-dataset testing, we only use
RGB images on both datasets. We combine our method in
classification mode with the structured edge detector [44] since
it induces classification forest like us but operates on edge
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Fig. 6. Parameter sweeps for age estimation (left column) and head pose
estimation (right column). Each row (from top to bottom) considers the
parameter of tree number, maximum tree depth and minimum node sample
size, respectively. The chosen parameter value is marked in red.

patches instead of pixels, which proves efficient in practice. We
use the same multiple low-level features extracted from 32 x 32
image patches and apply non-maximal suppression prior to
evaluation as in [44]. Edge detection accuracy is evaluated by
the fixed contour threshold (ODS), per-image best threshold
(OIS), and average precision (AP) [1], which are very suitable
to assess the performance of such an imbalanced problem.
Parameters: For age and head pose estimation, we empirically
combine 20 cost-sensitive trees in our regression forest, and
terminate splitting when the maximum depth 10 is reached or
if the node sample size is smaller than 5. Figure 6 shows the
robustness of these parameters across tasks. Evaluations are
done by varying one parameter at a time, with others fixed. The
chosen parameter value is marked in red. For edge detection,
we use the same parameter setting with [44].

Cross-validation is used to determine the trade-off parameter
C for cost-sensitive SVM/SVR (Eq. 9 and 10), 7 for biased
distance (Eq. 2), A and ~ in Eq. 4. We select K for discrimi-
native local clustering from 2 to 4.

B. Evaluation of the CS-RF and DSNA

We start with evaluating our key components of CS-RF
and DSNA. CS-RF concerns about generating good local
neighborhood, while DSNA makes unbiased and extrapolative
prediction and is the major contribution of this paper.

Figure 7 visualizes the advantage of DSNA over simple
averaged prediction in the three considered tasks. Clearly,
given an appropriate local neighborhood, e.g., by CS-RF,
DSNA can localize the correct mode (cluster) in it for the
difficult minority class samples. As a result, DSNA makes
much more unbiased predictions than simple averaging. More

Input | DSNA | Top5 neighbors in the chosen cluster | Averaged
Age estimation (Visualized by AAM)

69 58 67 61 60 46

Head pose estimation (Pitch angle, visualized by Sobel edge image)

2 ()

-90
II

Edge detection

-86

Fig. 7. Visualizations of both the DSNA converged result and simple averaged

result among the retrieved samples by CS-RFE. Results are obtained for the
minority class testing samples in all the three tasks.

TABLE I
ABLATION TEST FOR CS-RF AND DSNA IN AGE ESTIMATION (MAE ON
FG-NET), HEAD POSE ESTIMATION (AVG. MAE ON POINTING’04) AND
EDGE DETECTION (ODS oN BSDS500, HIGHER IS BETTER).

RF+ RED- WRE CS-RF+ CSRET

Methods | RF s\ioTE 61| SvM [9] [11] CSRF|AH [14] DSNA
Age [528 539 504 — 481 | 489 410

Pose |641  6.65 653 - 402 | 428  3.54

Edge [0.75 075 ~ 075 076 | 076  0.78

significantly, for age estimation on the small FG-NET dataset,
although there are very few elderly samples, our DSNA still
extrapolates well from the limited data.

Table I quantifies the benefits of both CS-RF and DSNA
against other competitive schemes in vision tasks. Note all
the RF variants in the left and middle columns—RF+SMOTE,
WRF (Weighted RF) and CS-RF simply average tree predic-
tions as in standard RF. They do not consider data extrapo-
lation as AH (Affine Hull) [14] and DSNA do. We make the
following observations: 1) The over-sampling method SMOTE
shows no benefits over Bagging in standard RF since it can
introduce undesirable noise (e.g., in age and pose cases). 2)
Cost-sensitive learning, in the middle column, helps for these
imbalanced tasks, and our CS-RF consistently outperforms
RED-SVM and WREFE. This suggests that simple weighting
schemes in RED-SVM and WREF are not adequate in complex
imbalanced tasks. In contrast, our CS-RF can be seen as an en-
semble of cost-sensitive experts organized in hierarchical trees,
and has higher capability and robustness. Another advantage
is that CS-RF provides a unified cost-embedded solution to
both regression and classification. 3) The supervised DSNA
combined with CS-RF leads to large improvements, whereas
the unsupervised AH shows no improvements or even worse
results. This emphasizes the importance of using supervisory
information. DSNA uses such information intelligently by
extrapolating from several discriminatively trained AH models
with a class-aware constraint (Eq. 4).

C. Comparison with State-of-the-Arts
Age estimation: We compare with the state-of-the-arts on FG-
NET and MORPH datasets in Table II. Our CS-RF+DSNA

outperforms most methods by a large margin, and reduces
the MAEs of the runner-up ISRCA and MSCNN on the



TABLE II
COMPARISONS OF AGE ESTIMATION RESULTS (MAE) ON FG-NET AND MORPH DATASETS.

FG-NET MORPH
RUN [30] RED-SVM [9] MTWGP [28] BIF [32] CPNN [34] CSOHR [31] CA-SVR [33] | KPLS [26] KCCA [27]
5.33 5.24 4.83 4.77 4.76 4.70 4.67 4.04 3.98
Choi et al. [25] MidFea-NS [15] Han et al. [52] RealAdaBoost [24] OHRank [4] IsRCA [29] CS-RF+DSNA | MSCNN [16] CS-RF+DSNA
4.66 4.62 4.60 4.49 4.48 4.38 4.10 3.63 3.54
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Fig. 8. MAE:s at different age groups on the FG-NET dataset.

TABLE III
COMPARISON OF POSE ESTIMATION MAES[°] ON POINTING’04.

Method Yaw Pitch  Avg.
KPLS [38] 6.56  6.61 6.59
SLDML [40] 631 671 651
Fenzi et al. [37] | 594 673  6.34
GLLiM [36] 562 6.68 6.15
KRF [39] 529 251 3.90
CS-RF+DSNA 504 2.03 3.54

two datasets by 6.4% and 2.5% respectively. The larger
improvement on FG-NET is impressive because the dataset
is very small and has missing class labels (old ages). This
validates our competence in synthesizing novel labels on small
imbalanced datasets. Note the mere cost-sensitive methods
RED-SVM, CSOHR and OHRank all show their inferiority
on this imbalanced dataset, necessitating the ability of extrap-
olation. The advanced features—Bio-Inspired Features (BIF),
generalized BIF with scattering transform in [31] and feature
selection by RealAdaBoost [24] also do not reach top in
this task. In contrast, our method, using the AAM features
only, even outperforms the deep feature-based MidFea-NS and
MSCNN due to the handling of data imbalance. Compared
with the indirect imbalance-handling methods, CPNN, CA-
SVR and ISRCA, ours performs much better by introducing
explicit mechanisms that are discriminative and extrapolative.
Figure 8 shows the MAE per decade for a detailed analysis
of the different errors and difficulties in the entire imbalanced
distribution. From the comparison with OHRank, the benefit of
our method becomes prominent at old ages with very limited
samples. We attribute this benefit to the imbalanced learning
and extrapolation abilities of the proposed DSNA. On the other
hand, we do not lose accuracy (even better) for those majority
or normal ages, which is desirable.
Head pose estimation: Table III compares our method with
the regression-based prior arts KPLS, SLDML, Fenzi et al.,
GLLiM and KRF on Pointing’04 dataset. As mentioned in

Fig. 9. Comparisons of imbalanced pitch angle estimation on Pointing’04.
(a) MAE:s at different pitch angles. (b) Average pitch MAEs with different
percentages of samples removed.

Section II, the sparse sampling of pose angle compounds
the learning difficulty, especially for the imbalanced pitch
angles. Our method performs best for both pose angles, with
a large margin for imbalanced pitch. Figure 9(a) compares
our results at individual pitch angles with those of KRF, the
state-of-the-art regression forest-based method. Again due to
the proposed cost-sensitive RF and extrapolative DSNA, our
method can better handle data imbalance at the rare +90°
poses. Specifically, we obtain an MAE of 8 degrees for
those £90° poses with only 24 training samples (hundreds
of samples for other poses), which is 55.6% lower than that
of KRF. For those normal poses besides +90°, we still have
MAEs lower than or comparable to KRF. We finally show the
performance in Figure 9(b) when pitch samples are randomly
removed to form a Gaussian-like distribution to mimic real-
world distributions. Our performance degrades more gracefully
with the increase of removed data, showing a strong ability to
handle small imbalanced data.

Edge detection: We refer to our combined method with struc-
tured edge (SE) detector [44] as CS-SE+DSNA. Table IV sum-
marizes an extensive comparison with state-of-the-art methods
on BSDS500. It is observed that CS-SE+DSNA outperforms
all “shallow” methods (top cell) across all evaluation metrics,
and also performs better than most deep models (bottom cell).
CS-SE+DSNA is even comparable to the top HED method
that has 16 deep layers, and also to the latest deep learning
methods [53], [54]. Such results are very impressive because
our method only uses hand-designed features but can reach
top with the built-in imbalance handling mechanism.

This advantage also holds over those similar random forest-
based methods—Sketch Tokens, SE and OEF. The major
reason again lies in our capability of correctly classifying
imbalanced edge patches and generalizing to novel edge
structures. Figure 10(a) compares our CS-SE+DSNA with
three random forest-based methods, including DeepContour
that applies random forest on top of deeply learned features.



TABLE IV
COMPARISON OF EDGE DETECTION RESULTS ON THE BSDS500

DATASET.
Method ODS OIS AP
ISCRA [47] 0.72 075 0.46
gPb-owt-ucm [1] 0.73 0.76  0.73
Sketch Tokens [5] 073 075 0.78
SCG [46] 0.74 076  0.77
PMI+sPb [45] 0.74 077 0.78
SE [44] 0.75 0.77 0.80
OEF [48] 0.75 077 0.82
SE+multi-ucm [43] 075 0.78 0.76
DeepNet [17] 0.74 0.76  0.76
N4-Fields [18] 075 077 0.8
DeepEdge [19] 0.75 077 0.81
DeepContour [20] 0.76  0.78 0.80
Unsupervised patch [54] 077 0.78 0.82
HFL [21] 0.77 079 0.80
LMLE-KNN [53] 078 0.79 0.83
HED [22] 0.78 0.80 0.83
CS-SE+DSNA 0.77 079 0.81

TABLE V

COMPARISON OF EDGE DETECTION (TOP) AND CROSS-DATASET
GENERALIZATION (BOTTOM) RESULTS ON THE NYU DATASET USING
ONLY RGB IMAGES. TRAIN/TEST INDICATES THE TRAINING/TESING

DATASET USED.

Method ODS OIS AP

gPb [1] (NYU/NYU) 0.51 052 037
SCG [46] (NYU/NYU) 0.55 057 046

SE [44] (NYU/NYU) 0.60 0.61 0.56
CS-SE+DSNA (NYU/NYU) 0.62 0.63 0.60
SE [44] (BSDS/NYU) 0.55 057 046
DeepContour [20] (BSDS/NYU) | 0.55 0.57 0.49
CS-SE+DSNA (BSDS/NYU) 0.57 058 0.51

Clearly, CS-SE+DSNA is able to produce cleaner results
with preserved edge structures. In other words, it is capable
of predicting the minority edges without jeopardizing the
majority non-edges that make edge maps clean.

To further validate the extrapolative ability of our method,
we perform the cross-dataset generalization test in comparison
to other competing methods. The NYU/NYU results are used
as baselines, see Table V. In both cases of NYU/NYU and
BSDS/NYU testing, we find favorable performance, demon-
strating a superior capability of generalization. Figure 10(b)
shows the visual results.

D. Generalization and Runtime Analysis

We here conduct another experiment on the non-image-
typed KEEL dataset repository [55] to show the generality
of our method. Specifically, we consider three classification
datasets IrisO, Glass6, and Glass2 with various imbalance
levels (see their imbalance ratios in Table VI), and two
regression datasets Abalone and Treasury that also have highly
skewed target variables. For all datasets, we adopt 5-fold cross-
validation to calculate the AUC (Area Under the ROC Curve)
metric for imbalanced classification, and report the standard
Mean Squared Error (MSE) for regression. Table VI shows that
our CS-RF+DSNA method can cope well with data imbalance
on these generic datasets, and always performs better than the
representative baselines SVM and WRF [11].

TABLE VI
CLASSIFICATION (AUC, HIGHER IS BETTER) AND REGRESSION (MSE,
LOWER IS BETTER) RESULTS ON GENERIC KEEL DATASETS.
IMBALANCE RATIO (IR) IS THE RATIO OF THE NUMBER OF MAJORITY
CLASS INSTANCES TO THE NUMBER OF MINORITY CLASS INSTANCES.

Classification Regression
Dataset IrisO Glass6  Glass2 | Abalone  Treasury
IR 2.00 6.38 10.39 - -
SVM 0.9900  0.8752  0.5000 2.8517 0.0637
WREF [11] 0.9800 09117 0.7282 2.6014 0.0594
CS-RF+DSNA | 0.9929  0.9338  0.7943 2.3521 0.0385
TABLE VII

RUNTIME (PER IMAGE) VS. PERFORMANCE (AGE MAE ON FG-NET,
AVG. POSE MAE ON POINTING 04, EDGE ODS oN BSDS500).

Age Pose Edge
Methods |MSCNN [16] Ours [KRF [39] Ours [SE [44] HED [22] Ours
Performance 3.63 3.54 3.90 3.54 0.75 0.78 0.77
Runtime 200ms 23ms| 7.7ms 19.4ms| 400ms 12s 550ms

Table VII presents the runtime analysis for our method in
comparison to the top performing methods in each vision
domain. The runtime is tested on an Intel Core i7 4.0GHz
CPU. During training, it takes a similar amount of time to
generate our CS-RF and existing RF methods like KRF [39]
and SE [44]. While during testing, our DSNA only introduces
a modest computational overhead as compared to RF methods,
but leads to better performance. Our speed advantages over
deep models MSCNN [16] and HED [22] are obviously large,
and the performance is comparable, which makes our method
a more desirable choice in such imbalanced problems.

V. CONCLUSION

We propose in this paper a principled method to handle
data imbalance and make unbiased predictions with preserved
discriminative and extrapolative ability. The predictions are
made by discriminative sparse neighbor approximation, within
the local data neighborhood retrieved by a cost-sensitive deci-
sion forest. The proposed method proves effective in diverse
vision tasks at various imbalance levels, and substantially
outperforms the state-of-the-arts including some deep learning
methods that ignore the imbalance issue. We show its great
potential as an efficient and general purpose solution for imbal-
anced learning. Future works include making the framework
deeper by using cascaded forests with multi-level predictions,
to explore the extent to which we can achieve by simulating
deep architectures.
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