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ABSTRACT

Existing person re-identification methods conventionally rely
on labelled pairwise data to learn a task-specific distance met-
ric for ranking. The value of unlabelled gallery instances is
generally overlooked. In this study, we show that it is possi-
ble to propagate the query information along the unlabelled
data manifold in an unsupervised way to obtain robust rank-
ing results. In addition, we demonstrate that the performance
of existing supervised metric learning methods can be signif-
icantly boosted once integrated into the proposed manifold
ranking-based framework. Extensive evaluation is conducted
on three benchmark datasets.

Index Terms— person re-identification, manifold, rank-
ing, distance metric learning, video surveillance

1. INTRODUCTION

For person re-identification (Re-ID), one is given a probe
query image to match against a set of gallery candidates cap-
tured in distributed locations at different times. The aim is
to associate the same individual and discard irrelevant ones.
This task is critical in surveillance applications but known
to be an intrinsically hard problem due to various sources
of variations, such as changes in illumination, background
clutter, and occlusion [1].

State-of-the-art methods [2, 3, 4, 5] treat re-identification
as a learning-to-rank problem [6]. Typically, supervised
metric learning [7] is adopted to learn a task-specific distance
function, so as to discard non-informative features selectively.
Learning such a function often requires a large quantity of
paired training data where the correspondences of pairs of
images are known and labelled. The lack of paired instances,
due to either non-existence or limited annotations, limits
severely the scalability of the model in real-world scenario.

The rich information and structure inherent in the unla-
belled gallery data are generally disregarded in existing per-
son re-identification studies. The intuition of exploiting mani-
fold of unlabelled data has been extensively explored in many

* Most of the work was done when the first author was at Vision Seman-
tics Ltd, London, UK.
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Fig. 1. A two-dimensional manifold embedding of gallery
images with two clear clusters – images visually similar to
the probe mostly reside on the blue circular region, whilst
dissimilar images can be found in the pink ellipsoid region.
One can imagine that visual ranking would be more effective
in this manifold space.

other fields, such as document summarisation [8], image re-
trieval [9, 10, 11], and automatic photo annotation [12], but
not specifically in the task of re-identification. Instances in
gallery though generally represent different individuals, they
do share common visual characteristics, of which the smooth
intrinsic geometry can be exploited to facilitate the ranking
task (see Fig. 1).

To this end, we propose a novel manifold ranking (MRank)
or unsupervised metric learning based framework for re-
identification. Unlike existing methods [2, 3, 4, 5] that
consider only exhaustively labelled pairwise data, MRank
exploits the manifold structure collectively revealed by a
large quantity of gallery instances to facilitate the diffusion
of query information. Intuitively, a higher rank will be as-
signed to gallery instances situated near to the probe sample
in the manifold space, whilst locally nearby instances are
encouraged to have similar ranks.
The contributions of this study: (i) we investigate the
importance of using unlabelled gallery data for rank diffu-
sion/sharing, which has been largely neglected by previous
re-identification studies; (ii) we systematically formulate and



validate existing MRank models for the re-identification task.
No previous re-identification studies have reported such an
analysis; (iii) we show that existing supervised metric learn-
ing methods [2, 3] can benefit from the unsupervised MRank
framework to gain improved performance.

2. RE-IDENTIFICATION BY MANIFOLD RANKING

We study two manfold ranking (MRank) models, namely
normalised graph Laplacian (MRank-Ln) [13] and unnor-
malised iterated graph Laplacian (MRank-Lu) [14] for the
re-identification task. The MRank-Ln was first presented
in [13] and have been widely explored in various retrieval
tasks [9, 10, 11]. Nonetheless, this approach is sensitive to
the setting of parameter. We discuss this issue in detail from
the perspective of re-identification and subsequently present
the more robust MRank-Lu [14].

We first provide the problem setup and mathematical
notations. We consider single-shot person re-identification
where only one image is available for each person in a testing
gallery. For each image, we extract a d-dimensional fea-
ture vector, denoted by x = (x1, . . . , xd)

T ∈ Rd. Given
a probe instance xp, we assign it with a positive label +1,
and ‘spread’ this query information to n unlabelled gallery
instances {xgi }

n
i=1, each of which has an initial label 0.

The vector of initial label assignment is formally defined by
y = (y1, . . . , yn+1)

T, with yi = 1 if xi = xp, and yi = 0 oth-
erwise. We define a combined set V = xp

⋃ {xgi }ni=1, and de-
note a ranking function as f : V → R. With the function we
aim to estimate a ranking score vector c = (c1, . . . , cn+1)

T,
so that each instance xgi has a score ci.

Neighbourhood graph construction: The first and common
step in MRank is to approximate the unknown manifold by
a k-nearest neighbour (kNN) graph G = 〈V, E〉 defined on
V . The edges E are weighted by a pairwise affinity matrix
A ∈ R(n+1)×(n+1) defined by

Aij = exp
(
−dist2(xi,xj)/σ2

)
, (1)

for i 6= j and Aii = 0. Note that the diagonal elements of
A are set to zero to avoid self-reinforcement during the label
propagation. The σ is a scaling parameter.

In an unsupervised scenario, the distance metric, dist :
V × V → R is usually defined as the Euclidean distance.
Nevertheless, if the correspondences of pairs of images are
known and labelled, one can learn a task-specific distance
metric [2, 3, 4]. Using the supervised metric effectively ‘dis-
tort’ the implicit embedding space approximated in MRank.
We will show in Sec. 3 that using supervised metric along
with MRank yields improved performance than just employ-
ing supervised metric alone.

Constructing a graph G from scratch each time a new
probe instance is observed can be computationally infeasi-
ble, particularly so in computing the affinity matrix, which

involves a complexity of O(n2). To avoid the computa-
tional overhead, one can pre-compute the affinity matrix
of gallery instances off-line Ag ∈ Rn×n. When a new
probe is observed, we then compute dp−g = dist

(
xp,xgj

)
and increase the dimension of affinity matrix from Ag to
A =

[
0 dp−g

dTp−g Ag

]
. The computational complexity is now

linear to the gallery size1.

Manifold ranking: Given A, we can then estimate the nor-
malised graph Laplacian, Ln and the unnormalised graph
Laplacian Lu as follows

Ln = I −D−1/2AD−1/2 = I − S, (2)
Lu = D −A, (3)

where D represents a diagonal matrix with Dii =
∑
j Aij .

Consequently the closed-form solutions of the two MRank
models are given as

MRank−Ln : c = (βI + Ln)
−1

y, (4)

MRank−Lu : c =
[
(βI + Lu)

−1
]m

y, (5)

where β ≥ 0 is a parameter common to both models, whilst
m ≥ 0 is specific to MRank-Lu.

First we give details on MRank-Ln. Let α = 1/(1+β) ∈
[0, 1). The fundamental idea is to iterate the estimation of

f(t+ 1) = αSf(t) + (1− α)y. (6)

In each iteration t, each instance receives propagated labels
from its neighbours (first term), and retains its initial label
assignment (second term). The balance of these two terms is
controlled by α (thus the β). The iteration process is repeated
until convergence (see [15] for proof) to obtain the limit of
the sequence {f(t)} as the ranking score vector c.

A closed-form solution can be obtained by finding the
limit of f(t) when it converges to c. Hence, by replacing
f(t+ 1) and f(t) in Eqn.(6) with c, we have

c = αSc+ (1− α)y (7)
(I − αS)c = (1− α)y (8)

c = (1− α)(I − αS)−1y (9)

where I is an identity matrix. For ranking, we can omit
the global factor (1 − α) without changing the results. By
replacing α = 1/(1 + β) and Ln = I − S back into
Eqn. (9), we obtain the closed-form solution in Eqn. (4),
c = 1

1+β (I + βI − S)−1 y ≡ (βI + Ln)
−1

y.
The MRank-Ln is sensitive to the value of β due to the

use of Ln. Specifically, as pointed out in [14], the ranking
function exhibits the following expression if β is too small

c ≡ ν1(x)/β + ε, (10)
1One could expand A continuously through including all observed probes

to possibly obtain a better manifold. To avoid tractability issue due to indefi-
nite size ofA, approximation such as [11] is needed. In our study, we always
start from Ag each time a probe is observed.



where ε is a small discriminative term critical for ranking.
ν1(x) is the first eigenvector of Ln, which is non-constant
and determined by the density p(x). In the task of person
re-identification, p(x) is not uniform given the vast variety
of individual appearances distributed with uneven frequency.
As a result, the ν1(x) is a function unrelated to the relevance
ordering of instances, and the resulting c will also be unin-
formative. We will show in Sec. 4 that small β value leads to
poor performance in MRank-Ln.

In comparison to MRank-Ln, the second model MRank-
Lu is more robust to β. The reason is that Lu has a con-

stant ν1(x) =
(

1√
1+n

, . . . , 1√
1+n

)T
, thus the ν1(x)/β will

not affect the final ranking score. In MRank-Lu, the term
(βI + Lu)

−1 is raised to the power of m to address the di-
verging problem [14], i.e. where all instances have 0 rank in
the limit of infinite unlabelled instances.

In Sec. 3, we will extensively compare both MRank-Ln
and MRank-Lu for the re-identification task. A summary of
MRank is given in Alg. 1.

Algorithm 1: Manifold Ranking (MRank) for Re-ID
Input: A probe instance xp, gallery set {xg

i }
n
i=1;

Output: Ranking score c;
1 begin Initialisation
2 Pre-compute affinity matrix Ag ∈ Rn×n for gallery set;
3 Define initial label assignment as y = (y1, . . . , yn+1)

T, with
yi = 1 if xi = xp, and yi = 0 otherwise;

4 begin Manifold Ranking
5 Receive probe instance xp;

6 Compute dist
(
xp,xg

j

)
;

7 Expand affinity matrix from Ag to A (Eqn.(1));
8 Compute the graph Laplacian Ln or Lu (Eqn.(2) or Eqn.(3));
9 Compute ranking score c (Eqn.(4) or Eqn.(5));

3. RESULTS

Datasets: Three datasets including i-LIDS [16], VIPeR [17],
and QMUL underGround Re-IDentification (GRID) [18, 19]
were used for evaluation (see Fig. 2). Among the three
datasets, i-LIDS and VIPeR are widely used for benchmark-
ing. The challenging GRID dataset2 is captured in a busy
underground station, with severe inter-object occlusion and
large viewpoint variations.
Features: Similar to [2, 3, 5], we partitioned an image equally
into six horizontal stripes, and extracted a mixture of colour
(RGB, HSV and YCbCr) and texture histograms (8 Gabor fil-
ters and 13 Schmid filters), forming a 2784-dimensional fea-
ture vector for each image.
Implementation details: There are a total of three free pa-
rameters in MRank-Ln, i.e.the k in the neighbourhood graph
construction, the σ in the Gaussian kernel (Eqn. (1)), and the

2http://www.eecs.qmul.ac.uk/˜ccloy/downloads_
qmul_underground_reid.html
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Fig. 2. Example frames of datasets. Note the large appearance
variations between the probes and true matches.

β in Eqn. (4). MRank-Lu has an additional parameter m. In
all the experiments we fixed k = 15 and quantified σ auto-
matically using the self-tuning method3 [20]. The value of β
was obtained through cross-validation on the training set. We
set m = 2 throughout our experiments.
Evaluation settings: We followed the same evaluation pro-
cedures outlined in [3, 5]. Specifically, the matching perfor-
mance was measured using the averaged cumulative match
characteristic (CMC) curve over 10 trials. The number of
training/testing person paired images in i-LIDS, VIPeR, and
GRID were set to 69/50, 316/316, and 125/(125 paired im-
ages + 775 non-paired images), respectively.
Comparative evaluations: We compared the MRank-Ln and
MRank-Lu with `1-norm [21], `2-norm [22], RankSVM [2],
and PRDC [3]. Recall that MRank can be initialised with
supervised distance metrics – we denote these variants as
MRank-Ln (dist) or MRank-Lu (dist). The CMC perfor-
mance comparisons between the MRank and conventional
methods are presented in Table 1.

In general, the MRank without supervision outperforms
both `1-norm and `2-norm based methods. It is worth point-
ing out that the performance of MRank (`2-norm) is generally
better than MRank (`1-norm). This can be due to the nature
of `2-norm in ‘punishing’ much more heavily on larger dis-
tances than `1-norm does, which allows the former to better
capture the local neighbourhood structure in gallery.

Importantly, we observe higher recognition rates yielded
by MRank as compared to those obtained using task-specific
distance metrics such as RankSVM and PRDC alone, with an
average percentage change improvement of 14.1% at rank-1
recognition rate on all three datasets. Figure 3 depicts some
examples for further insights. One can observe that both the
MRank-Ln and MRank-Lu initialised with PRDC gain no-
ticeably better retrieval results as compared to the original
PRDC without manifold ranking. In the second example,
PRDC fails to retrieve the true match, whist MRank not only
associates the right individual, but also shows superior capa-
bility in retrieving more relevant candidates, as evidenced by
the comparatively higher visual consistency across the top-
ranked instances. The better performance of MRank is ex-

3The self-tuning method is capable of providing a good balance of σ for
a wide range of k to capture the local information [20].



Method i-LIDS (p = 50) VIPeR (p = 316) GRID (p = 900)
r = 1 r = 5 r = 10 r = 15 r = 20 r = 1 r = 5 r = 10 r = 15 r = 20 r = 1 r = 5 r = 10 r = 15 r = 20

`1-norm [21] 29.60 54.80 67.60 74.60 81.00 9.43 20.03 27.06 30.95 34.68 4.40 11.68 16.24 19.12 24.80
MRank-Ln (`1-norm) 31.40 54.40 68.40 75.60 83.60 8.48 18.70 24.40 28.83 32.66 7.12 12.32 17.68 20.64 25.36
MRank-Lu (`1-norm) 30.60 53.40 68.20 76.00 82.80 8.35 17.06 22.47 26.33 30.76 6.00 13.28 17.92 21.12 24.00

`2-norm [22] 28.20 54.00 66.20 72.40 79.40 10.95 23.92 31.39 38.86 44.11 4.88 14.24 20.32 22.40 26.24
MRank-Ln (`2-norm) 31.40 55.60 67.60 77.40 82.20 11.42 24.27 33.73 38.92 44.11 5.76 14.96 21.76 25.12 30.96
MRank-Lu (`2-norm) 31.00 56.00 67.40 77.00 81.20 10.57 24.24 33.42 38.83 43.42 5.76 15.44 21.28 24.96 28.40

RankSVM [2] 42.60 67.60 78.80 86.00 92.00 14.87 37.12 50.19 58.48 65.66 10.24 24.56 33.28 39.44 43.68
MRank-Ln (RankSVM) 42.80 70.40 81.80 86.40 92.40 19.27 42.41 55.00 63.86 70.06 12.24 27.84 36.32 42.24 46.56
MRank-Lu (RankSVM) 41.80 69.60 81.40 87.00 91.40 19.34 42.47 55.51 64.11 70.44 11.44 27.60 36.40 42.24 46.24

PRDC [3] 44.80 68.00 77.60 84.20 88.20 16.01 37.09 51.27 59.43 65.95 9.68 22.00 32.96 38.96 44.32
MRank-Ln (PRDC) 47.80 71.60 80.60 85.00 90.60 19.37 42.78 54.78 63.77 69.62 10.88 24.96 35.84 41.44 46.40
MRank-Lu (PRDC) 49.00 70.60 80.60 85.60 90.60 18.45 41.74 53.67 62.72 69.27 11.12 26.08 35.76 41.76 46.56

Table 1. Performance comparisons between MRank variants and conventional methods without manifold ranking. We use
MRank (dist) when we initialise MRank with a specific distance metric. The value p is the number of person in a test set.
The MRank achieves an overall percentage change improvement of 14.1% at rank-1 recognition rate over the-state-of-the-art
RankSVM [2] and PRDC [3] methods.
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Fig. 3. Example results by manifold ranking (MRank), com-
pared against PRDC [3] without manifold ranking. The left-
most image is the probe. The true match within the ordered
gallery candidates is highlighted with red border.

pected since query propagation takes place in a structured
manifold, on which the potential and less-plausible candi-
dates have already been separated into distinct clusters (see
Fig. 1).

Sensitivity of β: Here we show the results of β sensitivity
test on the normalised graph Laplacian Ln and unnormalised
graph Laplacian Lu. Owing to space limit, we only show the
results on VIPeR with PRDC to initialise MRank. It is evi-
dent from Fig. 4 that Lu is less sensitive to β in comparison
to Ln. The results support our algorithmic analysis in Sec. 2.
In MRank-Ln, one can practically circumvent the selection of
β by setting its value to zero, and perform a pseudo-inverse to

50 100 150 200 250 300
0

50

100

Rank Score

M
at

ch
in

g 
Ra

te
 (%

)

 

 

Ln
Lu

VIPeR
−5 −4 −3 −2 −1 0 1
0.4

0.6

0.8

1

β (1×10x )

A
U
CM

C

 

 

Ln
Lu

VIPeR

� = 1 ⇥ 10�2

−5 −4 −3 −2 −1 0 1
0.4

0.6

0.8

1

β (1×10x )

A
U
CM

C

 

 

Ln
Lu

VIPeR �(1 ⇥ 10x)

Fig. 4. β sensitivity test on the unnormalised Laplacian (Lu)
and normalised Laplacian (Ln). PRDC was used to initialise
MRank. (Left) CMC curves with β = 10−2. (Right) Area
under the CMC (AUCMC) with β varied from 10−5 to 10.

Method VIPeR (p = 316)
r = 1 r = 5 r = 10 r = 15 r = 20

PRDC 16.01 37.09 51.27 59.43 65.95
MRank-Ln (PRDC), β=0 18.20 41.04 52.85 61.23 67.66

Table 2. At a small expense in performance degradation, the
Ln-based manifold ranking can be made more stable against
β (by setting its value to zero) and using pseudo-inverse to
compute the ranking function.

remove the first troublesome eigenvector4 [14]. The outcome
of this strategy can be seen in Table 2. Specifically, by set-
ting β = 0, MRank-Ln avoids the selection of β, whilst still
gaining superior performance to the original PRDC.

In general, MRank-Lu is advantageous to MRank-Ln for
re-identification task from the β stability standpoint.

4. CONCLUSION

We have systematically formulated and validated two differ-
ent graph Laplacian-based methods for the re-identification
task. Extensive experiments on three benchmark datasets
have demonstrated that the learning of gallery manifold is
critical and beneficial to the ranking task, and can be best
exploited to improve the ranking performance of existing
supervised-based techniques.

4E.g. using pinv in Matlab with small tolerance for eigenvalue cutoff.
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