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Abstract. Illuminant estimation to achieve color constancy is an ill-
posed problem. Searching the large hypothesis space for an accurate illu-
minant estimation is hard due to the ambiguities of unknown reflections
and local patch appearances. In this work, we propose a novel Deep
Specialized Network (DS-Net) that is adaptive to diverse local regions
for estimating robust local illuminants. This is achieved through a new
convolutional network architecture with two interacting sub-networks,
i.e. an hypotheses network (HypNet) and a selection network (SelNet). In
particular, HypNet generates multiple illuminant hypotheses that inher-
ently capture different modes of illuminants with its unique two-branch
structure. SelNet then adaptively picks for confident estimations from
these plausible hypotheses. Extensive experiments on the two largest
color constancy benchmark datasets show that the proposed ‘hypoth-
esis selection’ approach is effective to overcome erroneous estimation.
Through the synergy of HypNet and SelNet, our approach outperforms
state-of-the-art methods such as [1–3].

1 Introduction

The aim of color constancy is to recover the surface color under canonical (usually
white) illumination from the observed color. Common computational approaches
require estimating the spectral illumination of a scene to correct the extrinsic bias
it induces. Illumination estimation can be understood as a process of searching
through a hypothesis space to identify the best illuminant. It is often difficult to
find a good one since the problem is underdetermined – both the illuminant and
surface colors in an observed image are unknown. Finding a good hypothesis
of illuminant becomes harder when there are ambiguities caused by complex
interactions of extrinsic factors such as surface reflections and different texture
appearances of objects.

Recent methods [2, 4] and [5] attempt to exploit the exceptional modelling
capacity of convolutional network for this problem. We argue that it is still
non-trivial to learn a model that can encompass the large and diverse hypoth-
esis space given limited samples provided during the training stage. We believe
that a model with higher flexibility could better handle ambiguous cases. The
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(c) The restored image using DS-Net and the pixel-wise angular error 

maps for branch-1 and -2 for HypNet. The last image is the angular error 

map after the selection of SelNet. 

(b) The restored image using CNN [2] 

and the corresponding pixel-wise 

angular error.

(a) Input image

Fig. 1. The proposed DS-Net shows superior performance over existing methods in han-
dling regions with different intrinsic properties, thanks to the unique synergy between
the hypotheses network (HypNet) and selection network (SelNet). In this example, the
different branches of HypNet provide complementary illuminant estimations based on
their specialization. SelNet automatically picks for the optimal estimations and yields
a considerably lower angular error compared to that obtained from each respective
branch in HypNet, as well as that obtained from CNN [2]. The angular error is the
error in the iluminant estimate.

key principle advocated in [2, 4] and [5] is to arrange multiple layers of neurons
to extract increasingly abstract features for reconstructing a restored image.
We start from a similar principle but introduce new considerations in our net-
work design for addressing the problem of illuminant estimation. The proposed
network, named as Deep Specialized Network (DS-Net) consists of two closely
coupled sub-networks.
1) Hypotheses Network (HypNet) – The sub-network learns to map an image
patch to multiple hypotheses of illuminant of that patch. This is in contrast
to existing network designs that usually provide just a single prediction. In our
design, HypNet generates two competing hypotheses for an illuminant estimation
of a patch through two branches that fork from a main CNN body. Each branch
of HypNet is trained using a ‘winner-take-all’ learning strategy to automatically
specialize to handle regions of certain appearance. For instance, as can be seen
from Fig. 1, the first branch produces more accurate illuminant estimations for
non-shadowed and bright regions like (e.g. sky), whilst the second branch is more
effective on shadowed and textured areas (e.g. building and trees).
2) Selection Network (SelNet) – This sub-network makes an unweighted vote on
the hypotheses produced by HypNet. Specifically, it takes an image patch and
generates a score vector to pick the final illuminant hypothesis generated from
one of the branches in HypNet. In other words, the SelNet acts like a ‘filter’,
whose job is to decide which particular illuminant is more likely given the local
patch statistics. We show that SelNet yields much robust final predictions than
simply averaging the hypotheses. The entire structure of the two networks is
shown in Fig. 2.

The main contribution of this study is a new deep specialized network ef-
fective for illuminant estimation. Specifically, we design a single network (i.e. a
HypNet) to output multiple hypotheses, which resembles multiple expert net-
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works in an ensemble. A diversity-encouraging ‘winner-take-all’ learning scheme
is proposed to train the specialized network. We further present a viable way to
design a separate network (i.e. a SelNet) for hypothesis selection. Extensive ex-
periments on standard benchmarks show the superiority of DS-Net over existing
methods in both global-illuminant of multi-illuminants estimation.

2 Related Work

Color constancy is a well-studied topic in both vision science and computer vi-
sion. There is a rich body of literature on illuminant estimation. These methods
can be broadly divided into two categories: (1) statistic-based methods that esti-
mate the illuminant based on image statistics or physical properties. These meth-
ods consider the relationship between color statistics and achromatic colors [6,
7], statistics inspired from the human visual system [8–12], spatial derivatives
and frequency information from the image and scene illuminations [13–15], and
specularity and shadows [16–18]; (2) learning-based approaches that estimate the
illuminant using a model that is learned from training images. We refer read-
ers to [19, 20] for excellent surveys. In this section, we highlight learning-based
approaches that are related to our work.

In general, learning-based methods are shown to be more accurate than
statistics-based approaches. Features considered in these studies are mostly hand-
crafted, including chromaticity histograms [21–24], full three-dimensional RGB
histogram [25, 9], derivative and frequency features. Recent approaches have
shown that relatively simple features, such as color and edge moments [26],
or statistics of color chromaticity [1], could provide excellent performance.

While deep representation learned with CNN has achieved remarkable success
in various high-level tasks [27–29] and a few low-level vision problems [30–35], it
remains unclear if deep CNN can perform as well on the color constancy task.
Barron [3] shows that his method can learn convolutional filters for accurate
illuminant estimation. But he does not delve deeper into the use of deep CNNs.
It is worth pointing out that Barron assumes that illuminant induces a global 2D
translation in log-chrominance space. Such an assumption of uniform spectral
distribution of light in an image may not work well in some common cases
with multiple illuminants or scenes with in-shadow plus non-shadow regions. In
contrast to [3], our approach does not assume single illuminant. We will show the
effectiveness of the proposed approach over [3] on handling multi-illuminants.

Bianco et al. [2] make the first attempt to adopt a standard convolutional
network for illuminant estimation. We show in the experiments that our network
could provide more accurate estimates, thanks to the new network design with
network-induced hypothesis selection. Under the global illuminant setting, while
their method needs to specifically learn a separate support vector regressor to
map local estimates to a global estimate, our approach can produce better re-
sults by just performing a simple median pooling on the already well-estimated
illuminants from DS-Net.
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A notable approach is proposed by Joze and Drew [36]. They adopt an
exemplar-based approach - it finds similar surfaces in the training dataset, and
estimating the illumination for each target surface through comparing the statis-
tics of pixels belonging to similar surfaces with the target surface. This study
shows the importance of capturing multiple modes through a non-parametric
model. Our work is inspired by [36] but the proposed network does not require
explicit nearest surface comparison. The multiple modes are inherently captured
in the branch-level ensemble of HypNet.

There are other interesting approaches that exploit automatically detected
objects such as faces [37] to guide the illuminant estimation. Approaches in [38,
39] require user guidance to deal with multiple illuminants.

3 Illuminant Estimation by Convolutional Network

Consider an image Irgb = {Ir, Ig, Ib} taken from a linear RGB color camera
with black level corrected and saturated pixels removed. The value of Ic for
a Lambertian surface at pixel x is equal to the integral of the product of the
illuminant spectral power distribution E(x, λ), the surface reflectance R(x, λ)
and the sensor response function Sc(λ):

Ic(x) =

∫
Ω

E(x, λ)R(x, λ)Sc(λ)dλ, c ∈ {r, g, b}, (1)

where λ is the wavelength, and Ω is the visible spectrum. From the Von Kries
coefficient law [40], a simplified diagonal model is given by

Ic = Ec ×Rc, c ∈ {r, g, b}, (2)

where E is the RGB illumination and R is the RGB value of reflectance under
canonical (often white) illumination. Following this widely accepted model, the
goal of color constancy is to estimate E from I, and then compute Rc = Ic/Ec.

Following existing studies [3, 41], we process images in the space of UV
chrominance3. Specifically, we first convert the RGB channels of I to the log-
homogeneous chrominance (Iu, Iv) defined as follows:

Iu = log(Ir/Ig) Iv = log(Ib/Ig), (3)

and estimate the illumination in that space:

Eu = log(Er/Eg) Ev = log(Eb/Eg). (4)

One can easily recover (up to a scalar) the illumination E from UV to RGB [3]
by following

Er =
exp(−Eu)

z
Eg =

1

z
Eb =

exp(−Ev)
z

(5)

z =
√

exp(−Eu)2 + exp(−Ev)2 + 1.

3 As suggested by [41] and [3], the log-chrominance formulation is advantageous over
the RGB formulation in that we have 2 unknown instead of 3, and R and I are
related by simple linear constraint instead of a multiplicative constraint
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Fig. 2. The network architecture of Deep Specialized Network (DS-Net). It is trained
to estimate illuminant of a given patch. It consists of two interacting networks, namely
Hypotheses Network (HypNet) and Selection Network (SelNet). The former generates
two hypotheses of illuminants from its two branches. The latter selects one of the
hypotheses as the final estimation. It is possible to include more branches in HypNet.

In this study we present a deep convolutional network named as DS-Net
for illuminant estimation. An illustration of the proposed DS-Net structure is
given in Fig. 2. As introduced in Sec. 1, the proposed network is unique in that
its two sub-networks, namely HypNet and SelNet, can interact to collectively
provide accurate illuminant estimation. We will detail each sub-networks and
their interaction as follows.

3.1 Hypothesis Network - A Branch-Level Ensemble Network

Hypothesis Network (HypNet) is trained, given a patch of image, to estimate
multiple hypotheses of illuminant for that patch. The network consists of two
stages:

1. Feature extraction: extracts spectral and spatial features from a UV patch
of image.

2. Regression: estimates the illuminants from the features extracted by the
previous stage.

We will show in the following that these two stages can be modelled by a con-
volutional neural network. The structure of the network is illustrated in Fig. 2.
Feature extraction. Previous color constancy methods considered both spec-
tral and spatial information, such as the average of RGB, the color of edges, and
the double-opponent response [9]. Barron [3] achieved state-of-art results by us-
ing extended spatial features. Chen et al. [42] applied discrete cosine transform
(DCT) in log-space to extract illumination invariant features in face recogni-
tion. Following the literature, our model takes into account both spectral and
spatial features. These features can be captured by convolving an image with a
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bank of filters. The filters are learned during the training process of the network.
Specifically, we use two convolutional layers and apply the Rectified Linear Unit
(max(0, x)) [43] on their outputs (see Fig. 2).

Regression. A straightforward method for regression is to use a stack of fully
connected layers over the features from convolutional layers. However, we observe
there are always some kinds of patches that the model cannot estimate well. We
tried varying the number of layers, but the performance did not get any better.
We conjecture that the difficulty may be due to the large complexity of the
hypothesis space of this problem.

A plausible way to improve the performance of deep learning is to train an
ensemble of neural networks and combine them during prediction. The benefits
of ensemble methods are discussed in [44]. While the reasons combining models
works so well are not fully comprehended, there is ample evidence that improve-
ments over single models are the norm rather than the exception. The same
observation has been frequently validated in many deep learning studies. For
instance, Szegedy et al. [28] achieve top performance in ImageNet classification
task through combining three residual and one inception network; DeepID2+
network [27] ensembles 25 networks for face verification. It is generally acknowl-
edged that an ensemble is often much more accurate than the individual classi-
fiers that make them up.

We wish to design a network that can covers a large and rich hypothesis
space for improved performance. An ensemble network is a viable way to meet
our objectives. To this end, we introduce a branch-level ensemble approach. Con-
trary to the convention of training multiple networks to form an ensemble, the
proposed approach is implemented by forking after the last convolutional layer
into two branches of fully connected layers, namely A-branch and B-branch4.
Their mapping functions are represented as FA(·) and FB(·), respectively. The
different branches constitute an ensemble. Such a design is computationally more
attractive than a conventional network ensemble since they share common fea-
ture extraction layers. These two branches share only the input from the lower
convolutional layer, but have individual parameters themselves and have no in-
teractive connection. When the branches are trained with the ‘winner-take-all’
learning (discussed next), the two branches are able to cover different hypothesis
spaces. As a result, the network will provide two intermediate hypotheses for any
single patch.

To make a final decision for regression, two scores denoted as s = (sA, sB),
are given for the respective A and B branches and the branch with a higher score
is selected to provide the output, i.e., the scores serve as a filter to determine
which signal could pass.

Data preprocessing. We subtract per-channel means of a patch from each
channel, and finally add those means to the output. Specifically, the 2-channel
input is denoted as Ī = (Iu − Īu, Iv − Īv), where (Īu, Īv) are per-channel means.

4 We have tried more branches, but for this problem using more branches does not
bring significant improvement. For efficiency and clarity, we present the two-branch
version here.
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The output are FA(Ī) = (Ẽu − Īu, Ẽv − Īv)A for the A-branch and FB(Ī) =
(Ẽu − Īu, Ẽv − Īv)B for the B-branch, where Ẽ = (Ẽu, Ẽv) = F (Ī) + (Īu, Īv)
is the final estimated illumination. This operation makes the performance of
our model stable to a variety of illuminants. Please refer to the supplementary
material for a detailed explanation.
Winner-take-all learning of HypNet. In the training phase5, a patch is
extracted from an image and fed to the HypNet to obtain two hypotheses. The
associated ground truth illuminant is provided. Then the score (sA, sB) for the
branch whose hypothesis is closer to the ground truth is set to 1 and the other
one to 0. We call these obtained scores as the ground truth scores, which will
be used in SelNet training. Given a set of patches represented as

{
Ī
}

and their
corresponding ground truth illuminant {E∗}, we use Euclidean loss6 as the loss
function to optimize HypNet. Specifically for each i-th patch, the loss is

Li(Θ) = min
k∈{A,B}

(||Ẽi −E∗i ||22)k, (6)

where Θ represents the parameters of the convolutional layers and fully con-
nected layers. The loss is minimized using stochastic gradient descent with the
standard backpropagation. We adopt a batch-mode learning method with a
batch size of 128.

Note that in our ‘winner-take-all’ learning scheme, only (the better) one of
the branches is optimized and the other’s forward signal and backward gradient
are blocked7. In this way, at least one of the two branches is supposed to give
a precise estimate and the two branches are able to complement each other to
cover a larger hypothesis space. We attempted to back-propagate weighted sum
errors to update the parameters of both branches but found that this scheme
yielded much higher error in illuminant estimation.

In the test phase, the scores are obtained from another network, SelNet. We
will introduce SelNet in the next section.
Discussion. We recommend using filters with a larger size in conv1 layer (see
Fig. 2) to capture more spatial information. This follows several recent discov-
eries: (1) Barron [3] shows that using extended (spatial) features can improve
their model by 10%-20%; (2) Gao et al. [9] demonstrates that using the struc-
tures analogous to the double-opponent cells in the human vision system will
produce competitive results.

We note that there are different methods to create strong ensemble, e.g.,
through enforcing interactions among the branches during training to increase
diversity. We do not use deliberate method to create strong ensemble but just
initialize the two branches differently with a similar spirit to random decision
trees. Satisfactory performance is observed with this simple initialization ap-
proach, when it is used together with the proposed ‘winner-take-all’ learning.

5 Implemented using Caffe [45].
6 Despite the loss we use does not directly optimize the angular error typically em-

ployed in color constancy evaluation, satisfactory results are still observed.
7 This scheme is also related to the Multiple Choice Learning [?].
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3.2 Selection Network - A Hypothesis Selection Network

SelNet is trained to estimate the scores s = (sA, sB) that evaluate the quality of
estimates, given the input patch and the hypotheses of that patch from HypNet.
SelNet shares the same two-stage structure. However, the output of SelNet is not
illuminant but a set of scores for the branches in HypNet. We apply a softmax
operation on the output to get the scores normalized. Ideally, SelNet should give
a higher score to the branch that is closer to the ground truth.
Input representation. We do not apply the data preprocessing of HypNet,
since it may discard useful information such as local contrast. Consequently, we
use the original patch in UV space. This representation only uses the information
from the original data.
Learning for SelNet. In the training phase, an image patch and its ground
truth illumination are extracted from an image. In addition, its two hypotheses
and the ground truth scores are obtained from HypNet. We then arrange the
input data in the corresponding form for SelNet and obtain an output from
SelNet. The label is set to the ground truth scores. We optimize SelNet with
multinomial logistic loss. In test phase, the output of SelNet is used to select
one of the branches of HypNet.

3.3 Local to Global Estimation

Combining HypNet and SelNet, our DS-Net can predict patch-wise local illumi-
nation for an image. For the global-illuminant setting, a possible method is to
learn a separate support vector regressor to aggregate local estimates to a global
estimate [2]. Our approach can produce better results by simply performing a
median pooling on all the local illuminant estimates of the image, without re-
sorting to additional learning. Our unoptimized C++ code takes approximately
3 secs to process an image on a GPU.

4 Experiments

We evaluate the performance of our method in both global-illuminant and multi-
illuminants settings in Sec. 4.1 and Sec. 4.2, respectively.

4.1 Global-Illuminant Setting

To evaluate the performance of our method in the global-illuminant setting,
we use two standard datasets, i.e., the Color Checker Dataset [25] reprocessed
by Shi and Funt [46], and the NUS 8-camera dataset from Cheng et al. [47].
The Color Checker dataset contains 568 raw linear images with both indoor
and outdoor scenes. The NUS 8-camera dataset from Cheng et al. consists of
1736 images from 8 different cameras, and about 210 individual scenes, where
the same scene was photographed by each of the 8 cameras. For both of these
datasets, the Macbeth Color Checker chart is placed in each image to estimate
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Table 1. Performance comparison of the proposed DS-Net against various other meth-
ods on the Color Checker dataset [25, 46]. Some results were taken from past work
therefore resulting in missing entries.

Methods Mean Median Trimean Best-25% Worst-25% 95th percentile
White-Patch [40] 7.55 5.68 6.35 1.45 16.12 –
Edge-based Gamut [48] 6.52 5.04 5.43 1.90 13.58 –
Gray-World[6] 6.36 6.28 6.28 2.33 10.58 11.30
1st-order Gray-Edge [12] 5.33 4.52 4.73 1.86 10.03 11.00
2nd-order Gray-Edge [12] 5.13 4.44 4.62 2.11 9.26 –
Shades-of-Gray [49] 4.93 4.01 4.23 1.14 10.20 11.90
Bayesian [25] 4.82 3.46 3.88 1.26 10.49 –
General Gray-World [50] 4.66 3.48 3.81 1.00 10.09 –
Intersection-based Gamut [48] 4.20 2.39 2.93 0.51 10.70 –
Pixel-based Gamut [48] 4.20 2.33 2.91 0.50 10.72 14.10
Natural Image Statistics [10] 4.19 3.13 3.45 1.00 9.22 11.70
Bright Pixels [51] 3.98 2.61 – – – –
Spatio-spectral (GenPrior) [52] 3.59 2.96 3.10 0.95 7.61 –
Cheng et al. [47] 3.52 2.14 2.47 0.50 8.74 –
Corrected-Moment (19 Color) [26] 3.50 2.60 – – – 8.60
Exemplar-based [36] 3.10 2.30 – – – –
Corrected-Moment (19 Edge) [26] 2.80 2.00 – – – 6.90
CNN [2] 2.36 1.98 – – – –
Regression Tree [1] 2.42 1.65 1.75 0.38 5.87 –
CCC (disc+ext) [3] 1.95 1.22 1.38 0.35 4.76 5.85
HypNet One Branch 2.18 1.35 1.54 0.38 5.42 6.69
HypNet (A-branch) 5.06 4.38 4.52 1.26 10.05 12.43
HypNet (B-branch) 4.55 2.35 3.10 0.50 12.21 15.50
DS-Net (Average) 3.74 2.99 3.18 0.86 7.83 9.27
DS-Net (HypNet+SelNet) 1.90 1.12 1.33 0.31 4.84 5.99
DS-Net (HypNet+Oracle) 1.15 0.76 0.86 0.22 2.72 3.35

the ground truth illuminant. The color checker chart is masked out during the
training and evaluation. Our model is learned and evaluated using a three-fold
cross-validation. The angular error between the estimated illuminant Ẽrgb and
the ground truth illuminant E∗rgb is computed for each image:

ε = arccos

(
Ẽrgb · E∗rgb

‖Ẽrgb‖ · ‖E∗rgb‖

)
. (7)

We report the following metrics following existing studies [3, 1]: the mean,
the median, the tri-mean, the means of the lowest-error 25% and the highest-
error 25% of the data, and the 95 percentile for the Color Checker dataset.
For the NUS 8-camera dataset, we run 8 different experiments on the subset
for each camera, and report the geometric mean of each error metric for all
the methods. A number of different color constancy algorithms are compared,
and the reported baseline results were taken from past papers [3]. Experimental
results of the Color Checker dataset and NUS 8-camera dataset are summarized
in Tables 1 and 2, respectively.
Comparison with state-of-the-arts. On both the Color Checker and NUS 8-
camera datasets, the proposed method ‘DS-Net (HypNet+SelNet)’ achieves the
lowest mean and median errors in comparison to existing methods, including
the CNN method presented in [2]. We show some examples of our performance
against competitive methods in Fig. 3. In comparison to existing approaches, it



10 Shi Wu et al.

Table 2. Performance comparison of the proposed DS-Net against various other meth-
ods on the Cheng et al. [47] dataset.

Methods Mean Median Trimean Best-25% Worst-25%
White-Patch [40] 10.62 10.58 10.49 1.86 19.45
Edge-based Gamut [48] 8.43 7.05 7.37 2.41 16.08
Pixel-based Gamut [48] 7.70 6.71 6.90 2.51 14.05
Intersection-based Gamut [48] 7.20 5.96 6.28 2.20 13.61
Gray-World[6] 4.14 3.20 3.39 0.90 9.00
Bayesian [25] 3.67 2.73 2.91 0.82 8.21
Natural Image Statistics [10] 3.71 2.60 2.84 0.79 8.47
Shades-of-Gray [49] 3.40 2.57 2.73 0.77 7.41
Spatio-spectral (ML) [52] 3.11 2.49 2.60 0.82 6.59
General Gray-World [50] 3.21 2.38 2.53 0.71 7.10
2nd-order Gray-Edge [12] 3.20 2.26 2.44 0.75 7.27
Bright Pixels [51] 3.17 2.41 2.55 0.69 7.02
1st-order Gray-Edge [12] 3.20 2.22 2.43 0.72 7.36
Spatio-spectral (GenPrior) [52] 2.96 2.33 2.47 0.80 6.18
Cheng et al. [47] 2.92 2.04 2.24 0.62 6.61
CCC (disc+ext) [3] 2.38 1.48 1.69 0.45 5.85
Regression Tree [1] 2.36 1.59 1.74 0.49 5.54
HypNet One Branch 2.56 1.87 2.01 0.51 6.46
HypNet (A-branch) 3.49 2.94 3.03 0.90 7.00
HypNet (B-branch) 5.17 2.91 3.50 0.91 13.03
DS-Net (Average) 3.41 2.36 2.72 0.73 7.69
DS-Net (HypNet+SelNet) 2.24 1.46 1.68 0.48 6.08
DS-Net (HypNet+Oracle) 1.32 0.93 1.01 0.33 2.97

is observed that our method performs better on complex and diverse regions,
e.g. texture areas such as grass field, or smooth regions such as wall or sky. The
results suggest the effectiveness of adopting a branch-level ensemble network
with hypothesis selection.
Ablation analysis. We evaluated different variants of DS-Net:

– HypNet One Branch - it is a variant without the branch-level ensemble,
i.e., it is a normal network with only one branch of fully connected layers,
so SelNet is not needed for hypothesis selection.

– HypNet (A-branch) or (B-branch) - these variants refer to a model that
generate estimations based on either A-branch or B-branch of HypNet.

– DS-Net (Average) - this variant generates an estimation by averaging the
hypotheses from both A-branch and B-branch. It represents the typical way
of generating predictions from an ensemble.

– DS-Net (HypNet+SelNet) - this is our full model with hypothesis selec-
tion using SelNet.

– DS-Net (HypNet+Oracle) - in this variant the hypothesis is selected by
an oracle. The oracle selects the branch of which the estimation is closest to
the ground truth.

From the results on the Color Checker dataset, it is observed that the mean
and median errors are reduced by 13% (from 2.18 to 1.90) and 17% (from 1.35
to 1.12), respectively by using the branch-level ensemble in comparison to the
variant ‘HypNet One Branch’. It is interesting to point out that none of the
two branches individually can achieve satisfactory performance. Averaging the
hypotheses, i.e. HypNet (Average), does not improve the performance either.
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Fig. 3.Global illuminant setting : Restored images from the Color Checker dataset using
the illuminants estimated from three different methods including the proposed DS-Net,
Regression Tree [36] and CCC [3]. The angular error is provided at the bottom of each
image. We follow [1] to apply gamma function on RAW images for better visualization.

However, a significant improvement is obtained when SelNet is used for hypoth-
esis selection. Note that if the best branch is selected by an oracle, the errors can
be further reduced by a large margin (39% and 32% of the mean and median
errors). The results suggest the large potential of hypothesis selection and there
is still a room for further optimization. Our current SelNet achieves a selection
accuracy of 75%-77% on the test folds. In Fig. 4, we show two examples of angu-
lar error maps obtained by using different variants of DS-Net. Fig. 5 illustrates
the evolution of illumination estimated by the two branches of HypNet. It is
observed that both branches are gradually converging to the ground truth and,
at the same time, preserving their own specialities.

We also perform evaluation on SelNet by testing it with different input rep-
resentations, i.e. with and without per-channel means subtraction. It is observed
that with per-channel means subtraction the selection accuracy of SelNet drops
to 67%, leading to higher mean and median errors in the final illuminant esti-
mation (3.81 and 2.80).
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(e) HypNet+SelNetInput image (a) A-branch (b) B-branch (c) HypNet One 

Branch

(d) DS-Net 

(Average)

(f) HypNet+Oracle

Fig. 4. Global illuminant setting : (a, b) The respective per-pixel angular error map of
A-branch and B-branch of HypNet. (c) HypNet One Branch. (d) DS-Net (Average). (e)
The full model DS-Net (HypNet+SelNet). (f) Upper bound DS-Net (HypNet+Oracle).

Input Image A-Branch

Ground Truth

Iteration 10K

A-Branch

Iteration 100K

B-Branch B-Branch

Iteration 1000K
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Fig. 5. Global illuminant setting : Column 1: the input image and the restored image
using ground truth illumination. Column 2-4: the first two rows show the per-pixel
angular error map of A-branch and B-branch of HypNet, using the models after 10K,
100K and 1000K training iterations. The last row depicts the UV chrominance of per-
pixel illumination estimated by the two branches at the corresponding iterations.
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4.2 Multi-Illuminant Setting

The proposed DS-Net by nature predicts patch-wise local illumination for an
image. Thus it is capable of dealing with multi-illuminant settings although
we do not introduce specific mechanisms, e.g. segmentation [53], to handle the
different illuminants.

In this section, we evaluate the performance of our method on the popular
outdoor multi-illuminant dataset proposed by Gijsenij et al. [53]. This dataset
contains 9 challenging outdoor images with two illuminants for each image. Pixel-
wise ground truth illuminants are provided for evaluation. The per-image error
metric is the mean of pixel-wise angular error. Following [53], we report the mean
and median errors of all images in the whole dataset. Considering the limited
number of test images, global illuminant baselines and our method are first pre-
trained on the Color Checker dataset, and then tested on the outdoor dataset.
This also makes the task more challenging due to the cross-dataset evaluation.

We report the results of two state-of-art multi-illuminant methods, namely
the Multiple Light Sources [53] (using White Patch and Gray World ) and the
Exemplar-Based [36] method using surface estimates, together with two state-of-
art global-illuminant methods, Regression Tree [1] and CCC (dist+ext) [3]. The
results of Multiple Light Sources and Exemplar-Based methods were obtained
from the original paper [53] and [36]. We obtained the codes of Regression Tree [1]
from its project page and retrained it on the Color Checker dataset. We reimple-
mented CCC (dist+ext) [3]. We ensure that both methods achieve comparable
performance to their reported results under the global illuminant setting.

The results are summarized in Table 3. It is observed that the proposed
DS-Net outperforms existing global methods by a significant margin. Our ap-
proach also reports competitive performance in comparison to state-of-art multi-
illuminant methods [53, 36]. Note that unlike state-of-the-art exemplar-based
method [36] that requires finding surfaces for both training and test images by
mean-shift segmentation, and storing surfaces of all training images for nearest
neighbor comparison, our approach only needs to perform pure feed-forward test
given a new image. Qualitative results are shown in Fig. 6.

Table 3. Performance comparison of the proposed DS-Net against various other meth-
ods on the multi-illuminant outdoor dataset [53].

Methods Mean Median
Global state-of-the-arts:
Regression Tree [1] 9.3 7.8
CCC (disc+ext) [3] 8.4 9.0
Multi-illuminant state-of-the-arts:
Multiple Light Sources + White-Patch [53] - 6.7
Multiple Light Sources + Gray-World [53] - 6.4
Exemplar-Based Multi [36] - 4.3
DS-Net (HypNet+SelNet) 4.8 4.6
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Fig. 6. Multi-illuminants setting : Results from the outdoor multi-illuminant image
dataset [53]. For each group, the images, from left to right, are respectively: the original
image, the ground-truth pixel-wise illumination for that image, the estimated results
using DS-Net (HypNet+SelNet), CCC [3], and Regression Tree [36]. Best viewed in
color.

5 Conclusion

We have presented a new Deep Specialized Network (DS-Net) for illuminant
estimation. The proposed network uniquely combines two networks: a multi-
hypotheses network (HypNet) and a hypothesis selection network (SelNet), to
work hand-in-hand for robust estimation. A novel notion of ‘branch-level ensem-
ble’ is introduced. Through the proposed diversity-encouraging winner-take-all
learning scheme, we observed that the two branches of HypNet automatically
specialize on estimating illuminants for specific regions. When this capability
is coupled with SelNet, state-of-the-art performances are achieved on the two
largest color constancy dataset. Future work will investigate more effective se-
lection scheme for a larger ensemble. In addition, it will be interesting to explore
the applicability of specialized network for high-level vision task.
Acknowledgment. This work is partially supported by SenseTime Group Lim-
ited.
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