
Human Attribute Recognition by Deep
Hierarchical Contexts

Yining Li, Chen Huang, Chen Change Loy, and Xiaoou Tang

Department of Information Engineering, The Chinese University of Hong Kong
{ly015,chuang,ccloy,xtang}@ie.cuhk.edu.hk

Abstract. We present an approach for recognizing human attributes in
unconstrained settings. We train a Convolutional Neural Network (CNN)
to select the most attribute-descriptive human parts from all poselet de-
tections, and combine them with the whole body as a pose-normalized
deep representation. We further improve by using deep hierarchical con-
texts ranging from human-centric level to scene level. Human-centric
context captures human relations, which we compute from the nearest
neighbor parts of other people on a pyramid of CNN feature maps. The
matched parts are then average pooled and they act as a similarity regu-
larization. To utilize the scene context, we re-score human-centric predic-
tions by the global scene classification score jointly learned in our CNN,
yielding final scene-aware predictions. To facilitate our study, a large-
scale WIDER Attribute dataset1 is introduced with human attribute and
image event annotations, and our method surpasses competitive baselines
on this dataset and other popular ones.

1 Introduction

Accurate recognition of human attributes such as gender and clothing style can
benefit many applications such as person re-identification [1–4] in videos. How-
ever, this task still remains challenging in unconstrained settings where images
of people exhibit large variation of viewpoint, pose, illumination and occlusion.
Consider, for example, Fig. 1 where inferring the attributes “formal suits” and
“sunglasses” from only the target person is very difficult, due to the occlusion
and low image quality respectively. Fortunately, we have access to the hierar-
chical contexts—from the neighboring similar people to the global image scene
wherein the target person appears. Leveraging such contextual cues makes at-
tributes much more recognizable, e.g. being aware of a funeral event, we would be
more confident about people wearing “formal suits”. We build on this intuition
to develop a robust method for unconstrained human attribute recognition.

Our method is inspired by recent attribute models using parts, such as Pose-
lets [5], Deformable Part Model (DPM) [6] and window-specific parts [7]. These
methods are robust against pose and viewpoint variations. They are also capable
of localizing attribute clues at varying scales (e.g. small glasses vs. the full body).

1 Dataset URL: http://mmlab.ie.cuhk.edu.hk/projects/WIDERAttribute



2 Y. Li et al.

Human-centric context

Formal Suits  х Formal Suits  √ Formal Suits  √ 

Scene-level context (Event: Funeral)

Occlusion case

Human-centric context Scene-level context (Event: Skiing)

Sunglasses  √ Sunglasses  √ 

Low image quality case

Sunglasses  х 

Fig. 1. WIDER Attribute - example images to motivate the use of hierarchical
contexts for robust attribute recognition for the target person (red box): the human-
centric context and scene-level context help resolve visual ambiguities due to occlusion
and low image quality (low resolution/blurring).

State-of-the-art studies [8–10] improve by learning CNN features from detected
part regions instead of using low-level features, and finally combine them into
a pose-normalized deep representation for attribute recognition. The deep part
features have also been used in [11, 12] for fine-grained categorization tasks. Our
method is based on deep parts too, inheriting the aforementioned benefits and
end-to-end training.

Our major difference with respect to prior methods lies in the use of deep
hierarchical contexts. The hierarchical contexts are called ‘deep’ because they are
selected and represented in layers of our deeply trained model. Specifically, at the
human-centric level, we compute the nearest neighbor fields between parts of the
target person and contextual persons on a pyramid of CNN feature maps. Then
we pool all the matched parts together as a multi-scale similarity regularization
of our CNN, which proves effective in reducing attribute recognition ambiguities
in challenging cases. At the scene level, we fuse our human-centric predictions
with the global scene classification score that is jointly learned in CNN, which are
finally mapped to scene-aware attribute predictions. We notice that R*CNN [10]
also exploits context for human attribute recognition. But this model is limited
to using unspecified and potentially insufficient contextual cues from only some
bottom-up region proposal [13]. In contrast, we utilize semantically organized
contexts from both related human parts and the entire image scene.

To facilitate the study of deep hierarchical contexts, we introduce a large-scale
WIDER Attribute dataset with 14 human attribute labels and 30 event class
labels. The dataset consists of 57,524 labeled person bounding boxes in 13,789
event-labeled images collected from the WIDER dataset [14]. It is a new large-
scale human attribute dataset with both human attribute and scene annotations.
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It has more human attribute labels than existing public datasets, e.g. Berkeley
Attributes of People [5], HAT [15], CRP [16], PARSE-27k [17] and PETA [41].
Contributions: 1) We propose a novel deep model based on adaptively selected
human parts for human attribute recognition from unconstrained images. 2) We
propose to use deep hierarchical contexts to exploit joint context of humans
and scene for more robust attribute recognition. 3) We introduce a large-scale
WIDER Attribute dataset with rich human attribute and event class annota-
tions. Our method obtains a mean AP of 81.3% for all attributes on the test set of
WIDER Attribute dataset, 0.8% higher than the competing R*CNN [10] which
suggests the usefulness of hierarchical contexts. Our method achieves state-of-
the-art performance on other popular datasets too.

2 Related Work

Attribute Recognition. Attributes have been used as an intermediate rep-
resentation to describe object properties [18, 19] or even unseen object cate-
gories [20]. For attributes of people, early works rely on frontal faces only and
predict a limited number of attributes. For example, Haar features extracted
from the face region can be fed into the SVM [21] and AdaBoost [22] clas-
sifiers for gender and race recognition. Kumar et al. proposed using the pre-
dicted face attributes for face recognition [23] and visual search [24]. More recent
works study the problem of recognizing a larger set of attributes, such as gen-
der, hairstyle, and clothing style, from the whole human body image with large
variation of viewpoint, pose, and appearance. Part-based methods are the state-
of-the-art family of methods nowadays because they can decompose the input
image into parts that are pose-specific and allow to combine evidence from dif-
ferent locations and scales. Successful part models include Poselets [5], DPM [6]
and window-specific parts [7]. Recent deep part models [8–10] improve attribute
recognition performance by training deep CNNs from part regions. Neverthe-
less, most part models only concern for the target person region, thus miss the
opportunity to leverage rich contexts to reduce the attribute recognition ambi-
guities in challenging cases. An exception is R*CNN [10] that exploits context
from adaptive region proposals. Our experiments will show that it is weaker than
using hierarchical contextual cues from human-centric relations to global scene
event.
Nearest-Neighbor Learning. One of our goals in using hierarchical contexts
is to capture human relations or similarities by computing nearest neighbor parts
between people. Finding nearest neighbors to define image similarities has a long
history for vision tasks like image classification [25, 26]. For bird sub-category
classification, Zhang et al. [27] further proposed a similarity function for poselet
neighbor matching. In comparison, our part matching is more adaptive, and is
performed at online and multi-scale feature maps in a deep model. A recent deep
learning method [28] for multilabel image annotation also inherits the idea of
nearest neighbor matching, and pools the neighbor features for robustness. Our
method is related in neighbor pooling, but operates at score level and between
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different objects on the feature maps of one input image rather than between fea-
ture maps of different images, thus can be seen as a self-similarity regularization
during CNN training.
Scene Contexts. Oliva and Torralba [29] have studied the role of context in
object recognition, and analyzed a rich collection of contextual associations of
objects with their scene. Object detection also frequently exploits scene contexts.
DPM [30] re-scores each detected object by taking into account the scores of all
other classes in an image, thus the object co-occurrences in scenes. Choi et al. [31]
re-scored by learning the object co-occurrence and spatial priors in a hierarchical
tree structure2. Mottaghi et al. [32] exploited the object class contexts in both
local region and global scene. However, our exploited hierarchical contexts are
not limited to only object class relations, but also cover the entire background
scene. In this respect, our method is closely related to those works e.g. [33, 34]
that use global scene features. This line of work is attractive for not anchoring
context analysis to any specific regions or individual objects within a scene, thus
has a complete information coverage and also lower computation complexity
than e.g. the local model [35] that needs to additionally compute an adaptive
local contextual region. In our work, to prevent global scene context from en-
forcing strong properties on some less related objects, we only treat the global
scene features as complementary signals and map them into scene classification
scores in our CNN, conditioned on which we make probabilistic scene-aware
predictions.

3 Human Attributes from Deep Hierarchical Contexts

The proposed human attribute recognition method is part-based, and learns
pose-normalized deep feature representations from localized parts in a deep Con-
vNet. Combining the human parts and deep learning lends us robustness when
dealing with unconstrained human images with large variation. We adapt Fast
R-CNN [36] to process multiple regions, and the CNN feature maps and attribute
scoring modules are trained end-to-end by back-propagation and stochastic gra-
dient descent. This is in contrast to the deep methods in [8, 9] that optimize an
additional linear SVM for prediction. Fig. 2 provides the overview of our network
architecture.

Given an input image, each person in it is associated with one bounding box
hypothesis and a set of human part detections. The input image and its Gaussian
pyramid are passed through the network to obtain multi-scale convolutional
feature maps. Then we branch out four attribute scoring paths using different
bounding box regions on the feature maps. On the first two paths, we respectively
use the target person’s bounding box and part boxes to cover the full scale body
and local parts. This representation is widely adopted in many studies [8–10]. We

2 The term ‘Hierarchical Context’ is used in this paper to denote the tree-structured
organization of object classes in a scene. We use the same term but with a differ-
ent meaning of (human) object-object and object-scene contextual relations at two
semantic levels, which is also more complete in the coverage of image information.
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Fig. 2. Network architecture for unconstrained human attribute recognition using deep
hierarchical contexts. Given an input image, we compute its Gaussian pyramid and pass
them all through the CNN to obtain multi-scale feature maps. From the feature maps
we extract features for four sets of bounding box regions: the whole target person, a
target’s chosen parts (for clarity we only show 3 selected out of 5 detected), nearest
neighbor parts from the image pyramid and global image scene. The latter two corre-
spond to hierarchical contexts: human-centric and scene-level contexts. After scoring
the four region sets (see texts), we sum up all the scores as the final attribute score.

incorporate deep hierarchical contexts on the third and fourth paths. Specifically,
the human-centric context is selected from the nearest neighbor parts of other
people on the deep feature pyramid; the scene-level context is mapped to the
scene classification score as prior probability for re-scoring human attributes in
a scene-aware manner. Details will be provided in the following subsections.

3.1 Preliminaries

We first describe backgrounds of the Fast R-CNN framework before delving into
our model details. We choose the VGG16 [37] network pre-trained on ImageNet
classification [38] for its excellent performance. Fast R-CNN follows the paradigm
of generating region proposals first and then classifying them with learned fea-
tures and classifiers. To ensure computational efficiency, the intense convolutions
are only performed at image-level to obtain global conv5 feature maps, which
are reused for each region by ROI Pooling. The ROI Pooling layer functions by
superimposing a fixed 7 × 7 spatial grid over a bounding box region, then per-
forming max pooling within each grid cell to extract a fixed length feature vector
from conv5 feature maps. The feature vector is subsequently passed through two
fully connected layers fc6 and fc7 to generate prediction scores.

Our task is human centric. We thus adopt the whole person bounding box
and Poselet [39] detected regions as region proposals. To detect poselets, strong
poselet activations are first localized on the input image in a multi-scale sliding
window fashion. Then following [40], we refine the activation scores by con-
sidering the spatial context of each. The refined poselet activations are finally
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Fig. 3. Left: example poselet detections on the HAT [15] dataset. Right: example HAT
image with only one bounding box annotation (red box) for a person. The yellow and
green dashed boxes denote the detections of poselets and new people respectively.

clustered to form consistent person hypotheses. On datasets like HAT [15] and
our proposed WIDER Attribute, there may not exist a bounding box annota-
tion for every person in one image. So we associate to an unannotated person
the person hypothesis and its related poselets when the hypothesis confidence
is above a threshold [40]. We use these new detections to explore human-centric
context. For those already annotated people with ground truth bounding boxes,
we empirically associate to them the closest poselets whose person hypotheses
sufficiently overlap (with IoU larger than 0.6) with them. If such poselets do not
exist, we simply associate the nearby poselets that overlap with the ground truth
bounding boxes by at least 50%. Fig. 3 shows example detections of poselets on
an annotated person, and new detections of poselets and bounding boxes on
unannotated people.

3.2 Enriching Human Cues with Deep Hierarchical Contexts

Our goal is to recognize a set of human attributes {a ∈ A} for all the people
in an unconstrained image I. Suppose for a target person’s bounding box b in
I, we have detected a set of parts {s ∈ S}. We frame the attribute recognition
problem in a probabilistic framework, and estimate the likelihood of the presence
of attribute a on the target person given a set of his/her measurements V . We
take into account Human Cues from both human body b and parts S, and also
contextual cues from the remaining background regions in I. Thus we consider
measurements V = {b, S,N(s∗a), I}, where N(s∗a) and I are the Hierarchical
Contexts that will be detailed later.

We evaluate for each attribute a the conditional probability function given
measurements V :

P (a |V ) = P (a | b, S,N(s∗a), I)

∝ P (b, S,N(s∗a), I | a) = P (b | a) · P (S | a) · P (N(s∗a) | a) · P (I | a), (1)

where we assume uniform distribution for the prior probability P (a) that is
hence omitted, and assume conditional independence between different image
measurements. Eq. 1 can be equivalently solved in a log-linear model. We im-
plement this model in CNN by directly learning a score function Score(a; ·) for
each attribute a, and the learned score corresponds to the log probability after
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normalization. Then we can simply write the attribute score as the sum of four
terms:

Score(a; b, S,N(s∗a), I) = wT
a,b · φ(b; I)︸ ︷︷ ︸

person bounding box

+ max
s∈S

wT
a,s · φ(s; I)︸ ︷︷ ︸

attribute−specific parts

+

1

|N(s∗a)|
∑

s∈N(s∗a)

wT
a,s · φ(s; I)

︸ ︷︷ ︸
human−centric context

+wT
a,sc ·Wsc · φ(I)︸ ︷︷ ︸

scene−level context

. (2)

where φ(b; I) is the extracted fc7 features from region b in image I, while wa,·
are the scoring weights of attribute a for different regions.

The scoring terms for person bounding box b and parts {s ∈ S} form the
basis of our model, and are shown on the upper two paths in Fig. 2. Their sum
can be regarded as a pose-normalized deep representation at score level. Such
score fusion is found to be more effective than feature fusion (e.g. in [8]) in our
task, because the latter would generate a very large feature vector from the many
parts and overfits easily. In our CNN, the scoring weights and feature vectors
are jointly learned for all attributes a ∈ A.

Note for the part set S, we select the most informative part s for each at-
tribute a by a max score operation, and only add the maximum to the final
attribute score. This is because human attribute signals often reside in different
body parts, so not all parts should be responsible for recognizing one particu-
lar attribute. For example, the head part can hardly be used to infer the “long
pants” attribute. Through the max pooling of part scores, we are now able to
capture those distributed attribute signals from the rich part collection.

The third and fourth terms capture deep hierarchical contexts in case the
target person contains insufficient information, e.g. when he/she appears at a
very small scale or occluded (Fig. 1).

Human-centric context. Let s∗a = arg maxs∈S w
T
a,s · φ(s; I) be the person’s

highest scoring part that best describes attribute a, and N(s∗a) be its part neigh-
bor set searched by computing Euclidean distance between the fc7 features of
detected parts in the same image. We exploit N(s∗a) as the human-centric context
to capture human relations,

Each part neighbor found in human-centric context is scored by the part
weights wa,s, and then average pooled (see also Fig. 2, third path). By doing
so, we hope to accumulate more stable or even stronger signals of attributes
from the nearest neighbor fields between contextual people. Indeed, recognizing
“sunglasses” from an occluded or low resolution face can become much clearer
when considering a lot of similarly looking faces around. Here we choose to define
similarities in terms of the human parts instead of whole body because people
usually appear quite different globally but very similar at local parts. So it is
more reasonable to only transfer the good knowledge locally rather than globally
from surrounding people. In our approach, the local part matching is made easier
by using 1) poselet-based body parts that are pose-specific and well-aligned to
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Part neighbors specific to the“Long Hair”attribute Part neighbors specific to the“Long Paints”attribute

Fig. 4. Example nearest neighbors found for a human part that best describes a par-
ticular attribute. In each image, we show the target person’s bounding box in red,
the attribute-specific part in green, and the part neighbors in yellow. We also show the
average images of the found neighbor clusters, which strengthen the signal of attribute.

match, 2) a compact poselet selection {s∗a} for each person which reduces the
computational burden of online neighbor matching.

In practice, our part matching is performed on the CNN feature maps of
a Gaussian pyramid of input image (with three scales in our implementation).
Such a multi-scale neighbor set N(s∗a) is able to cover a broader range of part
similarities. Its size K = |N(s∗a)| is determined by experiments. Note we match
parts from all detected people including himself in one image. This guarantees
our approach can still work on images with only one person. In this case, the
use of human-centric context is actually a self-similarity regularization among
multi-scale features of the same person.

Fig. 4 illustrates some examples of the found part neighbors and their average
images. It is observed that the part patterns are strengthened from their multi-
scale versions as well as similar patterns from other people. This makes attributes
emerge more clearly and their recognition less ambiguous in challenging cases.
Scene-level context. The scene-level context is further exploited by the fourth
term in Eq. 2 (see also Fig. 2, fourth path). We propose to reuse the entire
scene feature φ(I) holistically, without the need for explicitly identifying helpful
objects or regions within a scene as in [35]. Obviously our method is computa-
tionally more appealing, but the downside is that some irrelevant information
contained in the global feature φ(I) may confuse the recognition of attributes.

Therefore, we “filter” φ(I) ∈ RD by converting it to the scene classification
score via Wsc ∈ R|C|×D, where C refers to all the considered scene types. This
way, only the scene-related high level information is preserved, while other vari-
ables are marginalized over during the conversion. Then we use the scene score
to provide the prior probability for most likely human attributes in the scene,
and re-score each attribute a via wa,sc ∈ R|C| in a scene-aware manner. This
factorization is actually equivalent to applying the Bayes’ rule to split the scene
conditional probability function P (a | I) in two factors:

P (a | I) =
∑
c∈C

P (a | c, I) · P (c | I), (3)

where the latent variable of scene type c is introduced.
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Accordingly, the attribute score is learned in our CNN via the total scoring
weights wT

a,sc ·Wsc. Note in some atypical cases, even the mere scene type can
be misleading. When a total mismatch exists between the human attributes
and background scene (e.g. suitmen on a basketball court), the pure person
characteristics is what our model should focus on. So we do not always expect
the scene context to have strong re-scoring effects. In our CNN, the weightings
between the human- and scene-induced scores are automatically learned in their
respective scoring weights.

3.3 Learning Details

We train our CNN together with the four scoring paths from an ImageNet ini-
tialization. As shown in Fig. 2, the whole network is trained end-to-end using
a cross entropy loss over independent logistics to output multi-attribute predic-
tions. Since the first three scoring paths all take human regions as input, we tie
their fc6 and fc7 layers to reduce the parameter space (but the scoring weights
for the whole person and body parts are separated). The fourth path’s fully
connected layers are not tied with others as they capture semantics of the global
scene. Particularly, we attach right after the scene’s fc7 layer a softmax scene
classification loss, in order to jointly learn the scene context priors.

During training, we augment the data by using bounding boxes of both hu-
man body and human parts that have no more than 10% horizontal and vertical
shift from the ground truth. We consider one image per mini-batch, and input
with bounding boxes of the whole body and |S| = 30 poselet detections for each
person. We set the learning rate to 10−5, the momentum to 0.9, and train for
40K iterations. The running time depends on the person number in one image.
On average, training takes about 1s for all persons in one image per iteration,
while testing takes about 0.5s per image on a NVIDIA Titan X GPU.

4 Datasets

4.1 Existing Human Attribute Datasets

We summarized a few popular human attribute datasets in Table 1. The Berke-
ley Attributes of People [5] dataset is the most widely used human attribute
database. It consists of 2003 training, 2010 validation and 4022 test images, and
a total of 17628 bounding boxes and 9 attribute labels such as “is male” and
“has hat”. Although this dataset is challenging for its wide human variation in
pose, viewpoint and occlusion, the number of images is rather small and each
is cropped from the original high resolution image and centered at a person’s
full body, leaving only limited background scene and people (likely truncated).
This is not suitable to exploit contexts in our method to attain its full capacity.
But we still detect poselets from the few and potentially incomplete neighbor-
ing people as described in Sec. 3.1. We treat them as a localized human-centric
context to see if they can help in this case.
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Table 1. Statistics of the proposed WIDER Attribute dataset and comparison with ex-
isting human attribute datasets (‘trunc.’ denotes truncation; ‘fg.’ denotes fine-grained).

Dataset Images Boxes Boxes/Img Attributes Attribute labels Scene labels

Berkeley [5] 8,035 17,628 2.2 trunc. 9 72,315 -
HAT [15] 9,344 19,872 2.1 27 fg. 536,544 -
CRP [16] 20,999 27,454 1.3 4 fg. 109,816 -

PARSE-27k [17] 9887 ∼27,000 2.7 10 fg. ∼270,000 -
WIDER Attribute 13,789 57,524 4.2 14 805,336 13,789

We also use a larger dataset of HAT [15] with 9344 human images from Flickr
that show a considerable variation in pose and resolution. The images are not
cropped and of the original full resolution. There are totally 19872 persons with
annotated bounding boxes, about 2 full persons per image on average, which
is more suitable than Berkeley dataset for our context-based method. To make
full use of the human-centric context, we further detect new person bounding
boxes and related poselets in HAT images following Sec. 3.1. There are 27 at-
tribute labels for each person, but some refer to human actions (e.g. “standing”,
“sitting”, “running”) and some are overly-fine-grained (e.g. 6 age attributes of
“baby”, “kid”, “teen”, “young”, “middle aged” and “elderly”). We follow the
train-val-test split of 3500, 3500 and 2344 images and employ all 27 attributes
in our experiments to facilitate comparison.

There are two other video-based human attributes datasets, namely Caltech
Roadside Pedestrians (CRP) [16] dataset and PARSE-27k [17] dataset. We sum-
marize these datasets in our supplementary material. We do not employ the two
datasets in our experiments since they are either small in terms of images (at-
tributes), or limits (even disables) the exploitation of human-centric context in
one image. Also they lack the scene labels to exploit global scene context.

4.2 WIDER Attribute Dataset

We introduce a large-scale WIDER Attribute dataset to overcome all the afore-
mentioned drawbacks of existing public datasets. Our dataset is collected from
the 50574 WIDER images [14] that usually contain many people and huge human
variations (see Fig. 5). We discard those images full of non-human objects or low
quality humans that are hardly attribute-recognizable, ending up with 13789 im-
ages. Then we annotate a bounding box for each person in these images, but no
more than 20 people (with top resolutions) in a crowd image, resulting in 57524
boxes in total and 4+ boxes per image on average. For each bounding box, we
label 14 distinct human attributes (no subcategories as in CRP [16] and PARSE-
27k [17]), resulting in a total of 805336 labels. The label statistics are shown in
Table. 1 and Fig. 6 (Left). Note that we allow missing annotation since not every
attribute can be specified for every person. For example, in the presence of face
occlusion, one cannot sensibly label a valid “sunglasses” attribute.

We split our dataset into 5509 training, 1362 validation and 6918 test im-
ages. The large quantities of images and human labels permit us to study the
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Fig. 5. Thirty examples of WIDER Attribute images, each from an image event class.

Fig. 6. Statistics of the number of attribute labels (Left), event class labels (Middle),
and event-specific attribute labels (Right) on WIDER Attribute dataset.

benefit of human-centric context. To explore the scene-level context, we further
label each image into 30 event classes. Fig. 6 (Middle and Right) illustrates the
image event distribution and two event-specific attribute distributions. We ob-
serve strong correlations between image event and the frequent human attributes
in it, e.g. “longsleeve” and “formal” are frequent in meeting, while “tshirt” is
frequent in picnic. Such correlations motivate our attribute re-scoring scheme
conditioned on scene classification.

Fig. 5 shows example images of events. In many cases, humans are small
and their attributes are hard to recognize without referring to contexts, e.g. in
ceremony. In other cases where only one person appears in an image (e.g. angler)
or the person is inconsistent with the background and stands out on his own
(e.g. a formally dressed man on the basketball court), our model should learn
to weigh more on the target human features over human-centric or scene-level
contexts. The new WIDER Attribute dataset forms a well-suited testbed for a
full examination of using hierarchical contexts.

5 Experiments

We evaluate our method on the test sets of the Berkeley Attributes of People [5]
and HAT [15] datasets, where there are many results to compare. We also use
the test set of the proposed WIDER Attribute dataset to compare with the
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Table 2. AP on the test set of the Berkeley Attributes of People [5] dataset. Note
PANDA [8] and ACNH [17] use 5-layer CNNs while others use 16-layer CNNs. Our
baseline combines the human body and attribute-descriptive parts at score level. Our
human-centric contextual models further pool scores from K = 1 or 2 nearest neighbor
parts. Part neighbors searched from single-scale (ss) CNN maps are also evaluated.

AP(%) Male Long Hair Glasses Hat Tshirt LongSleeves Shorts Jeans Long Pants mAP

PANDA [8] 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4 79.0
ACNH [17] 87.8 81.5 48.8 75.3 64.1 88.1 87.1 89.5 98.1 80.0
R-CNN [36] 91.8 88.9 81.0 90.4 73.1 90.4 88.6 88.9 97.6 87.8
R*CNN [10] 92.8 88.9 82.4 92.2 74.8 91.2 92.9 89.4 97.9 89.2

Gkioxari et al. [9] 92.9 90.1 77.7 93.6 72.6 93.2 93.9 92.1 98.8 89.5

Ours (baseline) 94.1 90.8 86.8 94.4 76.1 92.9 94.0 90.2 98.2 90.8
Ours (K = 1) 95.0 92.4 89.3 95.7 79.1 94.3 93.7 91.0 99.2 92.2
Ours (K = 2) 94.8 91.8 88.4 95.8 76.6 94.1 95.4 91.5 99.3 92.0

Ours (K = 1, ss) 94.3 91.5 88.0 94.6 77.7 93.9 93.7 90.0 98.7 91.4
Ours (K = 2, ss) 94.2 91.3 88.0 94.8 77.6 93.9 92.9 90.2 98.7 91.3

baselines that do not fully exploit the joint context of humans and scene. It
would be interesting to see the performance of our method when extended to
the video datasets of CRP [16] and PARSE-27k [17]. However, these datasets
hinder the use of human-centric context as mentioned in Sec. 4.1 and have no
scene labels. Hence they are not well-suited for the context where our method is
used, and we leave their experiments to future work. We measure performance
with the average precision (AP) for each human attribute and the mean average
precision (mAP) over all attributes.

Table 2 shows the results on Berkeley dataset where our method is com-
pared against all CNN-based state-of-the-arts. Both PANDA [8] and ACNH [17]
achieve relatively low mAPs with 5-layer networks. With a well trained 16-layer
network, R-CNN [36] improves the performance for nearly all the attributes,
using the holistic human body region only. R*CNN [10] and Gkioxari et al. [9]
further improve by adding a secondary contextual region and three human parts
respectively.

Our baseline that combines the human body and selected attribute-descriptive
parts achieves a mean AP of 90.8%. By searching a different number of parts K =
|N(s∗a)| from other people, our human-centric contextual model obtains consis-
tent gains across attributes, especially those located at small scales e.g. “glasses”.
We attain the highest mean AP of 92.2% when K = 1. This indicates that, even
in the case of cropped Berkeley images with rather limited context (2 neighbor-
ing people on average with large truncation), the local use of human context can
at least help and will not degrade the performance on single-person images. But
we found no more gains with more than K = 1 part neighbors. When the part
neighbors are searched at a single scale (ss) of CNN feature maps instead of their
Gaussian pyramid, a performance drop is observed which shows the importance
of seeking multi-scale part similarity. In the following experiments, we always
use three scales in a pyramid due to the good tradeoff between performance and
computational speed.



Human Attribute Recognition by Deep Hierarchical Contexts 13

Middle aged

Teen aged

ElderlyRunning/walking Crouching/bent

Wearing short shorts Female short skirt Female wedding dress Bermuda/beach shorts

Fig. 7. Visualizing the AP and example image for some hard human attributes in the
HAT [15] dataset.

Table 3. Comparing mAP on the test set of the HAT [15] dataset. Note ACNH [17]
uses a 5-layer CNN while other deep methods use 16-layer CNNs.

Methods DSR [15] EPM [42] Joo et al. [7] EPM+Context [42] ACNH [17] EPM+VGG16 [42]
mAP(%) 53.8 58.7 59.3 59.7 66.2 69.6

Methods R-CNN [36] R*CNN [10] Ours (baseline) Ours (K = 1) Ours (K = 2) Ours (K = 5)
mAP(%) 76.3 76.4 76.7 77.6 78.0 77.8

Table 3 reports the performance in mean AP of our approach and other
competitive methods on the HAT dataset. Our method outperforms all others
based on CNN or not (the first four). Note the Expanded Parts Model (EPM) [42]
uses the immediate context around a person, but only achieves 59.7% mean
AP. Its combination with deep VGG16 features significantly improves to 69.6%
mean AP. We finetune the state-of-the-art R-CNN [36] and R*CNN [10] on this
dataset, obtaining substantial margins over others. Whereas our adaptive deep-
part and whole body-based baseline performs slightly better. More gains are
obtained from using human-centric context, with the best mean AP of 78.0%
using K = 2 human part neighbors. This is reasonable considering the HAT
dataset contains richer human contexts in full resolution images.

Fig. 7 compares the competitive methods with our baseline and best-performing
methods in terms of AP of some hard attributes. It is evident that our used
human-centric context offers especially large gains for the hard attributes that
current competing methods do badly on, e.g. “crouching/bent”, “teen aged”
and “female short skirt”. These are the attribute categories that have large pose
variation and have small-sized or limited number of human samples.

The WIDER Attribute dataset contains richer contexts of humans and event
labels. We compare our deep hierarchical context-based method with the state-
of-the-art R-CNN [36] and R*CNN [10] in Table 4. Our method performs con-
sistently better for most attributes, achieving the best mean AP of 81.3% when
we use K = 5 human part neighbors. The reason is that there are more people
(about 4 on average) in the full image of the WIDER Attribute dataset. Our
performance also benefits from the use of scene-aware attribute re-scoring, as can
be observed from the mAP value difference. We further compare with the result
from a direct attribute scoring using global scene features, which is worse than
our proposed scheme. Fig. 8 shows our absolute improvements in AP over com-
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Fig. 8. Visualizing the absolute gains of competing methods over R-CNN [36] in terms
of AP(%) on the test set of WIDER Attrbiute

Table 4. Comparing mAP on the test set of the WIDER Attribute dataset. All methods
use 16-layer CNNs. Our full method exploits the scene-level context besides human-
centric context. Here ‘scene no cl.’ means directly using scene features with no scene
label conversions to re-score human attributes.

Methods R-CNN [36] R*CNN [10] Ours (baseline) Ours (K = 1)
mAP(%) 80.0 80.5 80.5 80.7

Methods Ours (K = 5) Ours (scene+K = 5) Ours (scene no cl.+K = 5)
mAP(%) 80.9 81.3 81.1

peting methods to validate our advantages. In the supplementary material, the
scene classification results as well as more detailed attribute recognition results
will be included.

6 Conclusion

We propose a new method for unconstrained human attribute recognition, built
on the simple observation that context can unveil more clues to make recog-
nition easier. To this end, we not only learn to score the human body and
attribute-specific parts jointly in a deep CNN, but also learn two scoring func-
tions that capture deep hierarchical contexts. Specifically, collaborative part
modeling among humans and global scene re-scoring are performed to respec-
tively capture human-centric and scene-level contexts. We introduce a large-scale
WIDER Attribute dataset to enable the exploitation of such hierarchical con-
texts. Our method achieves state-of-the-art results on this dataset and popular
ones as well. We believe our method can be easily extended to the video datasets
and other tasks such as human pose estimation.
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