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Abstract

We study the problem of distilling knowledge from a

large deep teacher network to a much smaller student net-

work for the task of road marking segmentation. In this

work, we explore a novel knowledge distillation (KD) ap-

proach that can transfer ‘knowledge’ on scene structure

more effectively from a teacher to a student model. Our

method is known as Inter-Region Affinity KD (IntRA-KD).

It decomposes a given road scene image into different re-

gions and represents each region as a node in a graph. An

inter-region affinity graph is then formed by establishing

pairwise relationships between nodes based on their sim-

ilarity in feature distribution. To learn structural knowl-

edge from the teacher network, the student is required to

match the graph generated by the teacher. The proposed

method shows promising results on three large-scale road

marking segmentation benchmarks, i.e., ApolloScape, CU-

Lane and LLAMAS, by taking various lightweight mod-

els as students and ResNet-101 as the teacher. IntRA-

KD consistently brings higher performance gains on all

lightweight models, compared to previous distillation meth-

ods. Our code is available at https://github.com/

cardwing/Codes-for-IntRA-KD.

1. Introduction

Road marking segmentation serves various purposes in

autonomous driving, e.g., providing cues for vehicle navi-

gation or extracting basic road elements and lanes for con-

structing high-definition maps [7]. Training a deep network

for road marking segmentation is known to be challenging

due to various reasons [8], including tiny road elements,

poor lighting conditions and occlusions caused by vehicles.

The training difficulty is further compounded by the nature

of segmentation labels available for training, which are usu-

ally sparse (e.g., very thin and long lane marking against a

large background), hence affecting the capability of a net-

†: Corresponding author.

work in learning the spatial structure of a road scene [8, 14].

The aforementioned challenges become especially crip-

pling when one is required to train a small model for road

marking segmentation. This requirement is not uncommon

considering that small models are usually deployed on vehi-

cles with limited computational resources. Knowledge dis-

tillation (KD) [6] offers an appealing way to facilitate the

training of a small student model by transferring knowledge

from a trained teacher model of larger capacity. Various KD

methods have been proposed in the past, e.g., with knowl-

edge transferred through softened class scores [6], feature

maps matching [9, 13] or spatial attention maps match-

ing [27].

While existing KD methods are shown effective in many

classification tasks, we found that they still fall short in

transferring knowledge of scene structure for the task of

road marking segmentation. Specifically, a road scene typ-

ically exhibits consistent configuration, i.e., road elements

are orderly distributed in a scene. The structural relation-

ship is crucial to providing the necessary constraint or regu-

larization, especially for small networks, to combat against

the sparsity of supervision. However, such structural rela-

tionship is rarely exploited in previous distillation methods.

The lack of structural awareness makes small models strug-

gle in differentiating visually similar but functionally differ-

ent road markings.

In this paper, we wish to enhance the structural aware-

ness of a student model by exploring a more effective way

to transfer the scene structure prior encoded in a teacher to

a student. Our investigation is based on the premise that

a teacher model should have a better capability in learning

discriminative features and capturing contextual informa-

tion due to its larger capacity in comparison to the student

model. Feature distribution relationships encoded by the

teacher on different parts of a deep feature map could re-

veal rich structural connections between different scene re-

gions, e.g., the lane region should look different from the

zebra crossing. Such priors can offer a strong constraint to

regularize the learning of the student network.

Our method is known as Inter-Region Affinity Knowl-

edge Distillation (IntRA-KD). As the name implies, knowl-
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Figure 1. Illustration of the affinity distillation process. FS and FT

are the intermediate activations of the student and teacher models,

respectively. G is the affinity graph that comprises nodes (feature

vectors) and edges (cosine similarities). Note that each circle in the

figure is a vector and different colors represent different classes.

edge on scene structure is represented as inter-region affin-

ity graphs, as shown as Fig. 1. Each region is a part of a

deep feature map, while each node in the graph denotes the

feature distribution statistics of each region. Each pair of

nodes are connected by an edge representing their similar-

ity in terms of feature distribution. Given the same input

image, the student network and the teacher network will

both produce their corresponding affinity graph. Through

graph matching, a distillation loss on graph consistency is

generated to update the student network.

This novel notion of inter-region affinity knowledge dis-

tillation is appealing in its simplicity and generality. The

method is applicable to various road marking scenarios with

an arbitrary number of road element classes. It can also

work together with other knowledge distillation methods.

It can even be applied on more general segmentation tasks

(e.g., Cityscapes [3]). We present an effective and effi-

cient way of building inter-region affinity graphs, includ-

ing a method to obtain regions from deep feature maps and

a new moment pooling operator to derive feature distribu-

tion statistics from these regions. Extensive experiments

on three popular datasets (ApolloScape [11], CULane [14]

and LLAMAS [1]) show that IntRA-KD consistently out-

performs other KD methods, e.g., probability map distilla-

tion [6] and attention map distillation [27]. It generalizes

well to various student architectures, e.g., ERFNet [20],

ENet [16] and ResNet-18 [5]. Notably, with IntRA-KD,

ERFNet achieves compelling performance in all bench-

marks with 21× fewer parameters (2.49 M v.s. 52.53 M)

and runs 16× faster (10.2 ms v.s. 171.2 ms) compared to

ResNet-101 model. Encouraging results are also observed

on Cityscapes [3]. Due to space limit, we include the results

in the supplementary material.

2. Related Work

Road marking segmentation. Road marking segmenta-

tion is conventionally handled using hand-crafted features

to obtain road marking segments. Then, a classification

network is employed to classify the category of each seg-

ment [10, 19]. These approaches have many drawbacks,

e.g., require sophisticated feature engineering process and

only work well in simple highway scenarios.

The emergence of deep learning has avoided manual

feature design through learning features in an end-to-end

manner. These approaches usually adopt the dense pre-

diction formulation, i.e., assign each pixel a category la-

bel [8, 14, 24]. For example, Wang et al. [24] exploit deep

neural networks to map an input image to a segmentation

map. Since large models usually demand huge memory

storage and have slow inference speed, many lightweight

models, e.g., ERFNet [20], are leveraged to fulfil the re-

quirement of fast inference and small storage [8]. How-

ever, due to the limited model size, these small networks

perform poorly in road marking segmentation. A common

observation is that such small models do not have enough

capacity to capture sufficient contextual knowledge given

the sparse supervision signals [8, 14, 29]. Several schemes

have been proposed to relieve the sparsity problem. For in-

stance, Hou et al. [8] reinforce the learning of contextual

knowledge through self knowledge distillation, i.e., using

deep-layer attention maps to guide the learning of shallower

layers. SCNN [14] resolves this problem through message

passing between deep feature layers. Zhang et al. [29] pro-

pose a framework to perform lane area segmentation and

lane boundary detection simultaneously. The aforemen-

tioned methods do not take structural relationship between

different areas into account and they do not consider knowl-

edge distillation from teacher networks.

Knowledge distillation. Knowledge distillation was origi-

nally introduced by [6] to transfer knowledge from a teacher

model to a compact student model. The distilled knowledge

can be in diverse forms, e.g., softened output logits [6],

intermediate feature maps [4, 9, 13, 31] or pairwise sim-

ilarity maps between neighbouring layers [26]. There is

another line of work [8, 22] that uses self-derived knowl-

edge to reinforce the representation learning of the network

itself, without the supervision of a large teacher model.

Recent studies have expanded knowledge distillation from

one sample to several samples [12, 15, 17, 23]. For in-

stance, Park et al. [15] transfer mutual relations between

a batch of data samples in the distillation process. Tung

et al. [23] take the similarity scores of features of differ-

ent samples as distillation targets. The aforementioned ap-

proaches [12, 15, 17, 23] do not consider the structural rela-

tionship between different areas in one sample. On the con-

trary, the proposed IntRA-KD takes inter-region relation-

ship into account, which is new in knowledge distillation.
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3. Methodology

Road marking segmentation is commonly formulated as

a semantic segmentation task [24]. More specifically, given

an input image X ∈ R
h×w×3, the objective is to assign a

label l ∈ {0, . . . , n−1} to each pixel (i, j) of X, comprising

the segmentation map O. Here, h and w are the height and

width of the input image, n is the number of classes and

class 0 denotes the background. The objective is to learn a

mapping F : X 7→ O. Contemporary algorithms use CNN

as F for end-to-end prediction.

Since autonomous vehicles have limited computational

resources and demand real-time performance, lightweight

models are adopted to fulfil the aforementioned require-

ments. On account of limited parameter size as well as in-

sufficient guidance due to sparse supervision signals, these

small models usually fail in the challenging road marking

segmentation task. Knowledge distillation [6, 8, 13] is a

common approach to improving the performance of small

models by means of distilling knowledge from large mod-

els. There are two networks in knowledge distillation, one

is called the student and the other is called the teacher.

The purpose of knowledge distillation is to transfer dark

knowledge from the large, cumbersome teacher model to

the small, compact student model. The dark knowledge

can take on many forms, e.g., output logits and intermedi-

ate layer activations. There exist previous distillation meth-

ods [15, 17, 23] that exploit the relationship between a batch

of samples. These approaches, however, do not take into

account the structural relationship between different areas

within a sample.

3.1. Problem Formulation

Unlike existing KD approaches, IntRA-KD considers in-

trinsic structural knowledge within each sample as a form of

knowledge for distillation. Specifically, we consider each

input sample to have n road marking classes including the

background class. We treat each class map as a region.

In practice, the number of classes/regions co-existing in a

sample can be fewer than n. Given the same input, an

inter-region affinity graph GS for the student network and

an inter-region affinity graph GT for the teacher are con-

structed. Here, an affinity graph is defined as

G = 〈µ,C〉, (1)

where µ is a set of nodes, each of which represents feature

distribution statistics of each region. Each pair of nodes are

connected by an edge C that denotes the similarity between

two nodes in terms of feature distribution.

The overall pipeline of our IntRA-KD is shown in Fig. 2.

The framework is composed of three main components:

1) Generation of areas of interest (AOI) – to extract regions

representing the spatial extent for each node in the graphs.

2) AOI-grounded moment pooling – to quantify the statistics

of feature distribution of each region.

3) Inter-region affinity distillation – to construct the inter-

region affinity graph and distill structural knowledge from

the teacher to the student.

3.2. Inter­Region Affinity Knowledge Distillation

Generation of AOI. The first step of IntRA-KD is to ex-

tract regions from a given image to represent the spatial ex-

tent of each class. The output of this step is n AOI maps

constituting a set M ∈ R
h×w×n, where h is the height, w is

the width, and n is the number of classes. Each mask map

is binary – ‘1’ represents the spatial extent of a particular

class, e.g., left lane, while ‘0’ represents other classes and

background.

A straightforward solution is to use the ground-truth la-

bels as AOI. However, ground-truth labels only consider the

road markings but neglect the surrounding areas around the

road markings. We empirically found that naı̈ve distillation

in ground-truth areas is ineffective for the transfer of con-

textual information from a teacher to a student model.

To include a larger area, we use a transformation opera-

tion to generate AOI from the ground-truth labels. Unlike

labels that only contain road markings, areas obtained af-

ter the operation also take into account the surrounding ar-

eas of road markings. An illustration of AOI generation is

shown in Fig. 3. Suppose we have n binary ground-truth

label maps comprising a set L ∈ R
h×w×n. For each class

label map L ∈ R
h×w, we smooth the label map with an av-

erage kernel φ and obtain an AOI map for the correspond-

ing class as M = ✶ (φ(L) > 0), where ✶(.) is an indicator

function and M ∈ R
h×w has the same size as L. Repeat-

ing these steps for all n ground-truth label maps provides us

n AOI maps. Note that AOI maps can also be obtained by

image morphological operations.

AOI-grounded moment pooling. Suppose the feature

maps of a network are represented as F ∈ R
hf×wf×c,

where hf , wf and c denote the height, width and channel

of the feature map, respectively. Once we obtain the AOI

maps M, we can use them as masks to extract AOI features

from F for each class region. The obtained AOI features

can then be used to compute the inter-region affinity. For

effective affinity computation, we regard AOI features of

each region as a distribution. Affinity can then be defined

as the similarity between two feature distributions.

Moments have been widely-used in many studies [18,

28]. Inspired by these prior studies, we calculate moment

statistics of a distribution and use them for affinity compu-

tation. In particular, we extract the first moment µ1, second

moment µ2 and third moment µ3 as the high-level statis-

tics of a distribution. The moments of features have ex-

plicit meanings, i.e., the first moment represents the mean

of the distribution, the second moment (variance) and the
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Figure 2. The pipeline of IntRA-KD. There are two networks in our approach, one serves as the student and the other serves as the teacher.

Given an input image, the student is required to mimic the inter-region affinity graph of the trained teacher model at selected layers. Labels

are pre-processed by a smoothing operation to obtain the areas of interest (AOI). AOI maps, shown as an integrated map here, provide the

masks to extract features corresponding to each class region. Moment pooling is performed to compute the statistics of feature distribution

for each region. This is followed by the construction of an inter-region affinity graph that captures the similarity of feature distribution

between different regions. The inter-region affinity graph is composed of three sub-graphs, i.e., the mean graph, the variance graph and the

skewness graph.

smooth

L

Figure 3. Generation of AOI. Take one class label map L as exam-

ple. We perform smoothing on L and obtain one AOI map M .

third moment (skewness) describe the shape of that distri-

bution. We empirically found that using higher-order mo-

ments brings marginal performance gains while requiring

heavier computation cost.

To compute µ1(k), µ2(k) and µ3(k) of class k, we in-

troduce the moment pooling operation to process the AOI

features.

µ1(k) =
1

|M(:, :, k)|

hf
∑

i=1

wf
∑

j=1

M(i, j, k)F(i, j),

µ2(k) =
1

|M(:, :, k)|

hf
∑

i=1

wf
∑

j=1

(M(i, j, k)F(i, j)− µ1(k))
2,

µ3(k) =
1

|M(:, :, k)|

hf
∑

i=1

wf
∑

j=1

(

M(i, j, k)F(i, j)− µ1(k)

µ2(k)

)3

,

(2)

...

1 2channel = c21

[µ1(k, 1), µ1(k, 2), . . . , µ1(k, c)] = µ1(k)
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hf
<latexit sha1_base64="APd7Z1IHsFVkcRJ+R+oX2GKH3dY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD+NBOChX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVe+qWruvVxq1PI4inME5XIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gBAIo25</latexit>

wf
<latexit sha1_base64="pzYwjyds5I8XdGCFU9UY7JOqfK8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2k3bpZhN2N0oJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9QP++WKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRqVe+iWru7rNRreRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFW/I3I</latexit>

...

Figure 4. Performing moment pooling on deep feature F ∈
R

hf×wf×c. We use the pooling of first moment as an example.

where |M(:, :, k)| computes the number of non-zero ele-

ments in M(:, :, k) and µr(k) ∈ R
c, r ∈ {1, 2, 3}.

An illustration of the process of moment pooling is de-

picted in Fig. 4. The moment pooling operation has the fol-

lowing properties. First, it can process areas with arbitrary

shapes and sizes, which can be seen as an extension of the

conventional average pooling. Second, the moment vectors

obtained by the moment pooling operation can faithfully re-

flect the feature distribution of a particular region, and yet,

the vectors are in a very low-dimension, thus facilitating ef-

ficient affinity computation in the subsequent step.

Inter-region affinity distillation. Since output feature
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Figure 5. Visualization of the affinity graph generated by differ-

ent methods. We represent edges in an affinity graph by inverse

similarity score. The number next to the method’s name is F1-

measure.

maps of the teacher model and those of the student model

may have different dimensions, performing matching of

each pair of moment vectors would require extra parameters

or operations to guarantee dimension consistency. Instead,

we compute the cosine similarity of the moment vectors of

class k1 and class k2, i.e.,

C(k1, k2, r) =
µr(k1)

T
µr(k2)

‖µr(k1)‖2‖µr(k2)‖2
, r ∈ {1, 2, 3}. (3)

The similarity score captures the similarity of each pair

of classes and it is taken as the high-level knowledge to be

learned by the student model. The moment vectors µ and

the similarity scores C constitute the nodes and the edges

of the affinity graph G = 〈µ,C〉, respectively (see Fig. 2).

The inter-region affinity distillation loss is given as follows:

Lm(CS ,CT ) =

1

3n2

3
∑

r=1

n
∑

k1=1

n
∑

k2=1

‖CS(k1, k2, r)−CT (k1, k2, r)‖
2
2.

(4)

The introduced affinity distillation is robust to the net-

work differences between the teacher and student models

since the distillation is only related to the number of classes

and is irrelevant to the specific dimension of feature maps.

In addition, the affinity knowledge is comprehensive since it

gathers information from AOI features from both the fore-

ground and background areas. Finally, in comparison to

previous distillation methods [6] that use probability maps

as distillation targets, the affinity graph is more memory-

efficient since it reduces the size of the distillation targets

from h×w×n to n2 where n is usually thousands of times

smaller than h× w.

From Fig. 5, we can see that IntRA-KD not only im-

proves the predictions of ERFNet, but also causes a closer

feature structure between the student model and the ResNet-

101 teacher model. This is reflected by the very simi-

lar structure between the affinity graphs of ERFNet and

ApolloScape CULane LLAMAS

Figure 6. Typical video frames of ApolloScape, CULane and

LLAMAS datasets.

ResNet-101. It is interesting to see that those spatially close

and visually similar road markings are pulled closer and

those spatially distant and visually different markings are

pulled apart in the feature space using IntRA-KD . An ex-

ample is shown in Fig. 5, illustrating the effectiveness of

IntRA-KD in transferring structural knowledge from the

teacher model to the student model. We show in the ex-

periment section that such transfers are essential to improve

the performance of student models.

Adding IntRA-KD to training. The final loss is composed

of three terms, i.e., the cross entropy loss, the inter-region

affinity distillation loss and the attention map distillation

loss. The attention map distillation loss is optional in our

framework but it is useful to complement the region-level

knowledge. The final loss is written as

L = Lseg(O,L) + α1Lm(CS ,CT ) + α2La(AS ,AT ).
(5)

Here, α1 and α2 are used to balance the effect of different

distillation losses on the main task loss Lseg. Different from

the mimicking of feature maps F ∈ R
hf×wf×c, which de-

mand huge memory resources and are hard to learn, atten-

tion maps A ∈ R
hf×wf are more memory-friendly and eas-

ier to mimic since only several important areas are needed

to learn. The attention map distillation loss is given as fol-

lows:

La(AS ,AT ) =

hf
∑

i=1

wf
∑

j=1

‖AS(i, j)−AT (i, j)‖
2
2. (6)

We follow [27] to derive attention maps from feature maps.

4. Experiments

Datasets. We conduct experiments on three datasets,

namely ApolloScape [11], CULane [14] and LLAMAS [1].

Figure 6 shows a selected video frame from each of the

three datasets. These three datasets are challenging due to

poor light conditions, occlusions and the presence of many

tiny road markings. Note that CULane and LLAMAS only

label lanes according to their relative positions to the ego

vehicle while ApolloScape labels every road marking on
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Table 1. Basic information of three road marking segmentation datasets.

Name # Frame Train Validation Test Resolution # Class Temporally continuous ?

ApolloScape [11] 114, 538 103, 653 10, 000 885 3384 × 2710 36
√

CULane [14] 133, 235 88, 880 9, 675 34, 680 1640 × 590 5 ×
LLAMAS [1] 79, 113 58, 269 10, 029 10, 815 1276 × 717 5

√

the road according to their functions. Hence, ApolloScape

has much more classes and it is more challenging com-

pared with the other two datasets. Apart from the public

result [11], we also reproduce the most related and state-

of-the-art methods (e.g., ResNet-50 and UNet-ResNet-34)

on ApolloScape for comparison. As to LLAMAS dataset,

since the official submission server is not established, the

evaluation on the original testing set is impossible. Hence,

we split the original validation set into two parts, i.e., one

is used for validation and the other is used for testing. Ta-

ble 1 summarizes the details and train/val/test partitions of

the datasets.

Evaluation metrics. We use different metrics on each

dataset following the guidelines of the benchmark and prac-

tices of existing studies.

1) ApolloScape. We use the official metric, i.e., mean

intersection-over-union (mIoU) as evaluation criterion [11].

2) CULane. Following [14], we use F1-measure as

the evaluation metric, which is defined as: F1 =
2×Precision×Recall
Precision+Recall

, where Precision = TP
TP+FP

and

Recall = TP
TP+FN

.

3) LLAMAS. We use mean average precision (mAP) to eval-

uate the performance of different algorithms [1].

Implementation details. Since there is no road marking

in the upper areas of the input image, we remove the upper

part of the original image during both training and testing

phases. The size of the processed image is 3384 × 1010 for

ApolloScape, 1640 × 350 for CULane, and 1276 × 384

for LLAMAS. To save memory usage, we further resize

the processed image to 1692 × 505, 976 × 208 and 960 ×
288, respectively. We use SGD [2] to train our models and

the learning rate is set as 0.01. Batch size is set as 12 for

CULane and LLAMAS, and 8 for ApolloScape. The total

number of training episodes is set as 80K for CULane and

LLAMAS, and 180K for ApolloScape since ApolloScape

is more challenging. The cross entropy loss of background

pixels is multiplied by 0.4 for CULane and LLAMAS, and

0.05 for ApolloScape since class imbalance is more severe

in ApolloScape. For the teacher model, i.e., ResNet-101,

we add the pyramid pooling module [30] to obtain both lo-

cal and global context information. α1 and α2 are both set

as 0.1 and the size of the averaging kernel for obtaining AOI

maps is set as 5 × 5. Our results are not sensitive to the ker-

nel size.

In our experiments, we use either ERFNet [20],

ENet [16] or ResNet-18 [5] as the student and ResNet-101

as the teacher. While we choose ERFNet to report most of

our ablation studies in this paper, we also report overall re-

Table 2. Performance of different methods on ApolloScape-test.

Type Algorithm mIoU

Baseline

Wide ResNet-38 [25] 42.2

ENet [16] 39.8

ResNet-50 [5] 41.3

UNet-ResNet-34 [21] 42.4

Teacher ResNet-101 [5] 46.6

Student ERFNet [20] 40.4

Self distillation
ERFNet-DKS [22] 40.8

ERFNet-SAD [8] 40.9

Teacher-student

distillation

ERFNet-KD [6] 40.7

ERFNet-SKD [13] 40.9

ERFNet-PS-N [26] 40.6

ERFNet-IRG [12] 41.0

ERFNet-BiFPN [31] 41.6

ERFNet-IntRA-KD (ours) 43.2

sults of ENet [16] and ResNet-18 [5]. Detailed results are

provided in the supplementary material. We extract both

high-level features and middle-level features from ResNet-

101 as distillation targets. Specifically, we let the features

of block 2 and block 3 of ERFNet to mimic those of block

3 and block 5 of ResNet-101, respectively.

Baseline distillation algorithms. In addition to the state-

of-the-art algorithms in each benchmark, we also compare

the proposed IntRA-KD with contemporary knowledge dis-

tillation algorithms, i.e., KD [6], SKD [13], PS-N [26],

IRG [12] and BiFPN [31]. Here, KD denotes probabil-

ity map distillation; SKD employs both probability map

distillation and pairwise similarity map distillation; PS-N

takes the pairwise similarity map of neighbouring layers as

knowledge; IRG uses the instance features, instance rela-

tionship and inter-layer transformation of three consecutive

frames for distillation, and BiFPN uses attention maps of

neighbouring layers as distillation targets.

4.1. Results

Tables 2- 4 summarize the performance of our method,

i.e., ERFNet-IntRA-KD , against state-of-the-art algorithms

on the testing set of ApolloScape [11], CULane [14] and

LLAMAS [1]. We also report the runtime and parameter

size of different models in Table 3. The runtime is recorded

using a single GPU (GeForce GTX TITAN X Maxwell)

and averages across 100 samples. ERFNet-IntRA-KD out-

performs all baselines and previous distillation methods in

all three benchmarks. Note that ERFNet-IntRA-KD has 21

× fewer parameters and runs 16 × faster compared with

ResNet-101 on CULane testing set; the appealing perfor-

mance strongly suggests the effectiveness of IntRA-KD.

We also apply IntRA-KD to ENet and ResNet-18, and
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Table 3. Performance of different methods on CULane-test. To

save space, baseline, teacher, student, self distillation and teacher-

student distillation in the first column are abbreviated as B, T, S,

SD and TSD, respectively.

Type Algorithm F1

Runtime

(ms)

# Param

(M)

B

SCNN [14] 71.6 133.5 20.72

ResNet-18-SAD [8] 70.5 25.3 12.41

ResNet-34-SAD [8] 70.7 50.5 22.72

T ResNet-101 [5] 72.8 171.2 52.53

S ERFNet [20] 70.2

10.2 2.49

SD
ERFNet-DKS [22] 70.6

ERFNet-SAD [8] 71.0

TSD

ERFNet-KD [6] 70.5

ERFNet-SKD [13] 70.7

ERFNet-PS-N [26] 70.6

ERFNet-IRG [12] 70.7

ERFNet-BiFPN [31] 71.4

ERFNet-IntRA-KD (ours) 72.4

Table 4. Performance of different methods on LLAMAS-test.
Type Algorithm mAP

Baseline

SCNN [14] 0.597

ResNet-50 [5] 0.578

UNet-ResNet-34 [21] 0.592

Teacher ResNet-101 [5] 0.607

Student ERFNet [20] 0.570

Self distillation
ERFNet-DKS [22] 0.573

ERFNet-SAD [8] 0.575

Teacher-student

distillation

ERFNet-KD [6] 0.572

ERFNet-SKD [13] 0.576

ERFNet-PS-N [26] 0.575

ERFNet-IRG [12] 0.576

ERFNet-BiFPN [31] 0.583

ERFNet-IntRA-KD (ours) 0.598

find that IntRA-KD can equivalently bring more perfor-

mance gains to the backbone models than the state-of-the-

art BiFPN [31] on ApolloScape dataset (Fig. 7). Note that

BiFPN is a competitive algorithm in all benchmarks. En-

couraging results are also observed on CULane and LLA-

MAS when applying IntRA-KD to ENet and ResNet-18.

Due to space limit, we report detailed performance of ap-

plying different distillation algorithms to ENet and ResNet-

18 in the supplementary material. The effectiveness of our

IntRA-KD on different backbone models validates the good

generalization ability of our method.

We also show some qualitative results of our IntRA-

KD and BiFPN [31] (the most competitive baseline) on

three benchmarks. As shown in (a) and (c) of Fig. 8, IntRA-

KD helps ERFNet predict more accurately on both long

and thin road markings. As to other challenging scenar-

ios of crowded roads and poor light conditions, ERFNet and

ERFNet-BiFPN either predict lanes inaccurately or miss the

predictions. By contrast, predictions yielded by ERFNet-

IntRA-KD are more complete and accurate.

Apart from model predictions, we also show the deep

39

40

41

42

43

44

45

46

47

0 1 10 100

m
Io

U
(%

)

#Parameters (M)
10210110010-1

w/o distillation

w/ IntRA-KD

w/ BiFPN

ENet ERFNet ResNet-18

Teacher

Figure 7. Comparison between IntRA-KD and BiFPN on ENet,

ERFNet and ResNet-18 on ApolloScape-test.

ERFNet-IntRA-KDinput

(a)

(b)

ERFNet-BiFPNERFNet

40.2 % 41.4 % 42.6 %

33.3 % 66.7 % 100 %

66.7 % 66.7 % 100 %

(c) 36.5 % 37.4 % 38.8 %

Figure 8. Performance of different methods on (a) ApolloScape,

(b) CULane and (c) LLAMAS testing sets. The number below

each image denotes the accuracy for (a) and (c), F1-measure for

(b). Ground-truth labels are drawn on the input image. Second

rows of (a) and (c) are enlarged areas covered by the red dashed

rectangle.

feature embeddings of different methods. As can be seen

from Fig. 9, the embedding of ERFNet-IntRA-KD is more

structured compared with that of ERFNet and ERFNet-

BiFPN. In particular, the features of ERFNet-IntRA-KD are

more distinctly clustered according to their classes in the

embedding, with similar distribution to the embedding of

the ResNet-101 teacher. The results suggest the importance

of structural information in knowledge distillation.

4.2. Ablation Study

In this section, we investigate the effect of each com-

ponent, i.e., different loss terms and the associated coeffi-

cients, on the final performance.

Effect of different loss terms. From Fig. 10, we have
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(d) ERFNet-IntRA-KD, 41.1(a) ERFNet, 39.0 (b) ERFNet-BiFPN, 39.6 (c) ResNet-101, 42.5
Figure 9. Deep feature embeddings (first row) and predictions (second row) of (a) ERFNet (b) ERFNet-BiFPN (c) ResNet-101 (teacher) (d)

ERFNet-IntRA-KD. The number next to the model’s name denotes accuracy (%). Regions of the model prediction, which are covered by

the red dashed rectangle, are highlighted in the third row. The color bar of the deep embeddings is the same as that of the model prediction

except the background, whose color is changed from black to pink for better visualization. Note that we crop the upper part of the label

and model prediction for better visualization and we use t-SNE to visualize the feature maps (first row).

the following observations: (1) Considering all moments

from both middle- and high-level features, i.e., the blue bar

with Lµ1
+Lµ2

+Lµ3
, brings the most performance gains.

(2) Attention map distillation, La also brings considerable

gains compared with the baseline without distillation. (3)

Distillation of high-level features brings more performance

gains than that of middle-level features. This may be caused

by the fact that high-level features contain more semantic-

related information, which is beneficial to the segmentation

task. (4) Inter-region affinity distillation and attention map

distillation are complementary, leading to best performance

(i.e., 43.2 mIoU as shown by the red vertical dash line).

Effect of loss coefficients. The coefficients of the attention

map loss and affinity distillation loss are all set as 0.1 to nor-

malize the loss values. Here, we test different selections of

the loss coefficients, i.e., selecting coefficient value from

{0.05, 0.10, 0.15}. ERFNet-IntRA-KD achieves similar

performance in all benchmarks, i.e., {43.18, 43.20, 43.17}
mIoU in ApolloScape, {72.36, 72.39, 72.38} F1-measure

in CULane and {0.597, 0.598, 0.598} mAP in LLAMAS.

Hence, IntRA-KD is robust to the loss coefficients.

5. Conclusion

We have proposed a simple yet effective distillation ap-

proach, i.e., IntRA-KD , to effectively transfer scene struc-

tural knowledge from a teacher model to a student model.

The structural knowledge is represented as an inter-region

affinity graph to capture similarity of feature distribution of

different scene regions. We applied IntRA-KD to various

lightweight models and observed consistent performance

gains to these models over other contemporary distillation

40 41 42 43
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ℒ𝜇1  ℒ𝜇2  ℒ𝜇3  ℒ𝑎 ℒ𝜇1+ℒ𝜇2+ℒ𝜇3  
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Figure 10. Performance (mIoU) of ERFNet using different loss

terms of IntRA-KD on ApolloScape-test. Here, “High” denotes

the mimicking of high-level features (block 5) and “Middle” de-

notes the mimicking of middle-level features (block 3) of the

teacher model. Lµi
denotes the variant where only the i-th or-

der moment is deployed for inter-region affinity distillation. Here,

“40.4” is the performance of ERFNet without distillation and

“43.2” is the performance of ERFNet-IntRA-KD that considers

Lµ1
+ Lµ2

+ Lµ3
and La. The number besides each bar is per-

formance gain brought by each loss term compared with ERFNet.

methods. Promising results on three large-scale road mark-

ing segmentation benchmarks strongly suggest the effec-

tiveness of IntRA-KD. Results on Cityscapes are provided

in the supplementary material.
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