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Abstract

A number of computer vision problems such as human
age estimation, crowd density estimation and body/face
pose (view angle) estimation can be formulated as a re-
gression problem by learning a mapping function between a
high dimensional vector-formed feature input and a scalar-
valued output. Such a learning problem is made difficult
due to sparse and imbalanced training data and large fea-
ture variations caused by both uncertain viewing conditions
and intrinsic ambiguities between observable visual fea-
tures and the scalar values to be estimated. Encouraged
by the recent success in using attributes for solving clas-
sification problems with sparse training data, this paper
introduces a novel cumulative attribute concept for learn-
ing a regression model when only sparse and imbalanced
data are available. More precisely, low-level visual fea-
tures extracted from sparse and imbalanced image sam-
ples are mapped onto a cumulative attribute space where
each dimension has clearly defined semantic interpretation
(a label) that captures how the scalar output value (e.g.
age, people count) changes continuously and cumulatively.
Extensive experiments show that our cumulative attribute
framework gains notable advantage on accuracy for both
age estimation and crowd counting when compared against
conventional regression models, especially when the la-
belled training data is sparse with imbalanced sampling.

1. Introduction
A number of computer vision problems concern with the

estimation of a scalar value given a high dimensional feature
input vector. Examples of such problems include age esti-
mation from facial images [10, 12, 15, 16, 33, 35], crowd
counting [4, 5, 8, 25], and human body/face pose (view an-
gle) estimation [14, 27, 34]. Such a scalar value can vary
continuously within a certain range but is often assumed
to be discrete (e.g. human age and people count), and its
estimation can be obtained by solving a multi-class clas-
sification problem [13, 21]. Such a multi-class labelling
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Figure 1. Age estimation and crowd counting both suffer from
sparse and imbalanced training data distribution. Top: FG-NET
facial age dataset. Bottom: UCSD crowd dataset.

treatment of scalar value estimation assumes implicitly that
each scalar output value (a label) is independent from other
possible values (labels). On the contrary, human age and
people-count are strongly correlated and neighbouring val-
ues have closer similarities than those further apart, e.g. a
human face of 50 years old is more similar to that of 49
than that of 10. To exploit this observation, most existing
approaches to the problem consider a regression solution
in which a mapping function is learned explicitly between
high dimensional feature input vectors and scalar output
values [4, 5, 8, 10, 12, 15, 16, 33, 35]. However, there are
two major challenges for learning a good regression func-
tion for solving such a problem: (1) inconsistent and incom-
plete features, (2) sparse and imbalanced training data.

In general, regression based interpretation suffers from
large feature variations caused by both viewing conditions
and visual inconsistency in interpretation. For instance,
people of the same age can appear visually very differ-
ent, e.g. the images were taken under very different light-
ing conditions (extrinsic condition change) or images of
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Figure 2. The pipeline of our framework compared with conven-
tional regression framework.

very different people of the same age (intrinsic condition
change). In addition to lighting and viewing angles, oc-
clusion can also cause crowd frames of the same people-
count to appear significantly different. Existing regression
techniques have mostly focused on addressing the challenge
of feature inconsistency by constructing a low-level feature
representation robust against both the intrinsic and extrin-
sic condition changes [16, 34]. There are less efforts on
addressing the second challenge on sparse and imbalanced
data.

Accurately labelled facial images for human age estima-
tion and public space video data for crowd counting are gen-
erally sparse and imbalanced due to inherent ambiguities in
annotation and a lack of sufficient samples for covering the
data distribution. For example, despite large quantities of
facial images available publically, e.g. from Flickr, anno-
tating the true age of a facial image can be very unreliable
[10, 28]. As a result, benchmarking datasets such as FG-
NET [7, 13, 15, 35] and MORPH [7, 13] contain very lim-
ited samples of each age group and consist of faces of true
ages rather than annotated age. Figure 1 shows that in the
FG-NET dataset, at most 46 images are available for each
age group and the distribution is highly imbalanced across
the age groups. This is rather sparse given that the faces
belong to different genders and ethnical groups (therefore
compounded by inconsistent visual features). Even though
annotating crowd images can be made more reliable, an-
notating people count exhaustively for all possible values
is laborious and often practically infeasible, e.g. a public
place as shown in Figure 1 may never exhibit fewer than 10
people or greater than 50 people in any realistic time gap.
Consequently existing crowd benchmarking datasets such
as UCSD [4, 5, 8] are also sparse. Moreover, the sparse-
ness in training data also implies that there are often gaps
in training samples where no imagery sample is available
for mapping onto certain output values causing difficulties
in learning the regression mapping function.

In this work, we consider that the two challenges above
are related in the sense that the feature inconsistency prob-
lem is compounded by sparse and imbalanced training data
and vice versa, and they need be tackled jointly in modelling
and explicitly in representation. To that end, we propose a

novel cumulative attribute based representation for learn-
ing a regression model. Attributes have been successfully
applied for solving various computer vision problems by
classification [11, 20, 22, 24], but have never been used for
regression to the best of our knowledge. Attribute models
are designed to solve the data sparsity problem by exploit-
ing shared characteristics between different classes. These
common characteristics are either defined manually by hu-
man a priori knowledge [20, 22] or discovered automati-
cally from data [11, 24]. Existing attribute learning meth-
ods cannot be directly applied to our regression problem
because: (1) Attributes need be discriminative to be useful.
For classification, it is natural to identify discriminative at-
tributes for differentiating classes. Discriminative attributes
can also be discovered by learning a discriminative model
[24]. However, for learning a regression model it is much
less clear what is discriminative and more importantly what
can be shared across different scalar output values when
those values change continuously. (2) Existing attribute def-
initions do not reflect nor exploit the unique characteristic
of neighbouring scalar output values sharing more similari-
ties than those further apart.

Our notion of cumulative attributes aims to explore the
spirit of the conventional discriminative attribute for ad-
dressing sparse training data, whilst is specifically designed
for addressing the regression problem. More specifically,
each attribute is not only discriminative but also cumula-
tive in constraining all other attribute values depending on
its relative positioning in value: each attribute separates all
training images into two groups (binary) by a label (e.g. an
age). For instance, for learning a regression model for age
estimation, if there are 70 age groups, there will be 69 bi-
nary attributes, each separating facial images above certain
age from all those below. By cumulative attributes, we con-
sider each attribute cumulatively conditioning all other at-
tributes. That is, for a person of 50, not only the correspond-
ing attribute 50 is positive, but also from 1 all the way to
49 are conditionally positive. This is designed specifically
to capture the unique correlation of data samples so that
those with neighbouring scalar output values share more
than those further away in our cumulative attribute space.
Critically, this cumulative nature is also able to cope with
sparse and imbalanced data distribution more effectively. In
particular, by utilising all data samples for discriminating
each attribute regardless the availability of labelled data for
that attribute (value) alone, sparsity problem is mitigated.
The cumulative nature of the attribute also greatly reduce
the ill-effect of imbalanced data, e.g. even if there was no
sample for a certain age value (attribute), that attribute is
positively assigned by any samples of lower age than the
considered value, thus can be learned indirectly using plenty
of neighbouring samples.

The pipeline of our framework is illustrated in Figure 2.

2



Once cumulative attributes are constructed from the scalar
values of training samples, a two-layers regression frame-
work is employed. Firstly, given any low-level feature pre-
sentation of the image, we learn a multi-output regression
model to map the feature inputs to an intermediate attribute
space. To that end, a single structured output model is
learned to correlate explicitly different attributes. Secondly,
another regression model is learned to estimate the scalar
output using the attribute representation as input. Extensive
experiments are carried out using benchmarking age esti-
mation and crowd counting datasets and show that (1) our
cumulative attribute representation improves generally the
age estimation and crowd counting accuracy over the state-
of-the-art with standard image feature representations, (2)
the improvement is particularly significant when the train-
ing data is sparse and imbalanced.

2. Related Work

Age estimation – Most existing techniques for age estima-
tion from facial images fall into three categories: multi-
class classification [13], regression [16], and hybrid [15]
of the two, with regression models being the most widely
used. Guo et al. [15] proposed a locally adjusted regres-
sion method to search local regions for adjusting. They
further introduced BIF features for regression [16]. Re-
cently, Zhang et al. [35] proposed a multi-task wrapped
Gaussian Process Regression for personalized age estima-
tion that jointly learns personalized characteristics and com-
mon changes shared between people. Our approach is de-
signed to utilise any low-level features and regression mod-
els, with the key difference being that the input to the re-
gression model is represented by cumulative attributes in-
stead of the low-level features directly. More recently, a
ranking based age estimation method is proposed [7]. For
each age group, a ranker (a binary classifier) is learned to
separate people into two groups, older or younger than the
said age group. Given a testing image the output of the
rankers are aggregated directly for estimating the age. This
method shares similar spirit to our model in that learning
each ranker uses all the data in the dataset in order to mit-
igate any sparsity problem. However, different from our
method, the rankers are not cumulative therefore do not
share mutual information, and they do not benefit from
an intermediate representation. Moreover, such a ranking
based model is extremely expensive to both learn and apply
(see Section 4.6 on computational cost).

Crowd counting – Similar to age estimation, crowd count-
ing can be solved by either classification and regression
with most recent work adopting the regression approach.
Despite the low-level features being very different, the same
regression models such as support vector machine regres-
sion and Gaussian Processes have been employed for both

problems [4, 5, 8, 25]. Crowd counting in images may be
considered somewhat less ambiguous than age estimation
because the latter has to cope with different people of any
gender and race but with the same age, whilst most exist-
ing crowd counting models are scene specific, equivalent
to learning a person specific age estimator. Our cumulative
approach is shown to improve on existing methods on both
problems.

Attribute learning – Visual attributes have received in-
creasing interests in the past three years for classification
problems ranging from image categorisation [20, 29], per-
son re-identification [22], to action and video event recog-
nition [11]. Attributes are either user defined based on prior
knowledge [20, 22] or data driven or latent and discovered
from data [11, 24]. The former has clear semantic mean-
ing and the latter not necessarily so. On the other hand,
manually defined attributes may not be computable con-
sistently nor discriminative sufficiently despite additional
human annotation, from which data driven attributes do
not suffer. Our cumulative attributes are unique such that
each attribute has clear semantic meaning and by defini-
tion being discriminative, yet no additional annotation is
required. They are specifically designed for learning a re-
gression model whilst none of the existing attribute repre-
sentations is suitable. Moreover, it is more desirable to learn
attributes jointly as they are typically correlated [26]. How-
ever, computationally learning a large number of attributes
and modelling their correlation explicitly is a challenge. In
this paper, a multi-output regression model is formulated to
learn all attributes in a single model that is also extremely
efficient to compute. Note that recently proposed notion of
relative attribute [19, 29] defines attribute as the real-valued
strength of the presence of visual properties. However, rela-
tive attributes are learned as a ranking problem rather than a
regression problem because only pairwise-comparison data
are available [19, 29].

Contributions – Our contributes are three-fold: (1) For
the first time, an attribute representation is constructed for
learning a regression model. (2) A novel concept of cu-
mulative attributes is proposed with both clear semantic
meaning and also discriminative, with added advantages of
efficiently computable and requiring no additional annota-
tion. (3) Extensive experiments on both age estimation and
crowd counting benchmark datasets demonstrate the supe-
riority of our method over the state-of-the-arts, especially
when the data is sparse and imbalanced.

3. Methodology

As shown in Figure 2, our cumulative attributes can be
considered as an intermediate-level semantic representation
that bridges the gap between any low-level features and a
regression model given sparse annotation. During training
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our cumulative attribute based regression framework con-
sists of the following steps:

1. Given a set of training images, we extract low-level
imagery features and the scalar output value (e.g. age
or people count) is converted into a binary cumulative
attribute vector (Section 3.1).

2. A cumulative attribute representation is computed so
that given an image, its cumulative attributes can be
assigned and used as an intermediate representation
of the image. Specifically, a single multi-output re-
gression model is learned to evaluate and assign all at-
tributes simultaneously (Section 3.2).

3. A second layer single output regression model is
learned to map the attribute representation to the scalar
output value (Section 3.3).

During testing, given an unseen image, the cumulative at-
tribute vector is first computed using the multi-output re-
gression model with the low-level imagery features as input.
The cumulative attribute vector is then fed into the single
output regression model to estimate the scalar output value.

3.1. Cumulative Attribute

Given a training image/frame i, where i = 1, 2 . . . N
and N denotes the total number of training images/frames,
we firstly extract low-level imagery features xi from the
whole image/frame. This can be Active Appearance Model
features [9] for age estimation and foreground & edges &
GLCM features [4, 8] for crowd counting. Any other fea-
tures in the literature can be equally applied. Secondly, nor-
malization on the feature data including scale normalization
and extra perspective normalization [4] for crowd counting
are carried out.

Now for the ith training data point, the known scalar
value yi (e.g. age and people count) is converted into a cu-
mulative attribute vector ai. The dimensionality of the vec-
tor ai, denoted as m, depends on the value range of y. Typi-
cally, for age or crowd count, there is an upper limit, e.g. 70
for a certain age dataset and 100 for a certain crowd scene.
This upper limit will be used as the value of m. Formally,
given N training sample {(x, y)}i , i = 1, 2 . . . N, the jth el-
ement of the cumulative attribute vector for the ith sample
assumes a binary value:

aj
i =

{
1, when j 6 yi,

0, when j > yi,

where j = 1, 2, · · · ,m. Evidently, for the ith attribute vec-
tor ai, the first yi attribute elements are all “ones” and the
rest m − yi elements are all “zeros”.

In comparison , a non-cumulative attribute (NCA) is con-
structed as follows:

aj
i =

{
1, when j = yi,

0, when j 6= yi.

Note, only one element of a non-cumulative attribute vec-
tor ai is one and all the rest elements are zeros. There is
thus a critical difference between our CA representation and
the conventional NCA representation: with the CA repre-
sentation, data points with neighbouring scalar values are
represented by a very similar attribute set, whilst with con-
ventional NCA representations, the difference between the
attributes of two data points of any scalar value is the same.
For example, a face of age 40 and another face of age 41
represented using a 69D CA vector will have only one el-
ement that is different, whilst the number of different at-
tribute elements increases to 30 for a face of age 10. On the
other hand, using a NCA representation, there is always a
single element difference no matter how different the ages
are and how the two faces look like. Our cumulative at-
tributes thus capture a better representation of a continu-
ously changing value for object appearance, corresponding
directly to a scalar output value change continuously for
learning a regression function. Our experiments in Section
4.3 show the distinct advantages of using CA over NCA for
both age estimation and crowd counting.

3.2. Joint Attribute Learning

Now the training set is represented as {(x,a, y)}i , i =
1, 2 . . . N. We need to learn the mapping relationships be-
tween both x and a, and a and y. In this section we focus on
the former. Most existing attribute learning methods aim to
establish a mapping between x and each element of a inde-
pendently using a binary classifier such as a support vector
machine. However, this is not only making the false as-
sumption that different attributes are independent from each
other, but also computationally expensive. In our work, we
estimate the mappings of all m attributes simultaneously by
learning a multi-output regression function, in particular, a
multivariate ridge regression function [1, 17]. In its con-
ventionally form, a ridge regression function learns a sin-
gle output mapping. Recently, multivariate ridge regression
[1, 8] has been exploited for simultaneous output estima-
tion. Following established design principle of multi-task
learning [2, 3, 18, 30], we formulate the following multi-
output attribute learning problem. Given xi and aj

i being
low-level features of the ith image and the jth element of
its corresponding attribute vector, the objective function for
the jth attribute is written as:

min
1
2
‖wj‖2

2 + C

N∑
i=1

loss(aj
i , f

j(xi)),

where f j(u) = wju+ bj and loss(·) denotes the loss func-
tion. Hence, a joint attribute learning by multi-output re-
gression is formulated as
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min
m∑

j=1

(
1
2
‖wj‖2

2 + C
N∑

i=1

loss(aj
i , f

j(xi))).

For simplifying the above without losing generality,
quadratic loss function is considered. The objective func-
tion of the joint attribute learning is then given as:

min
1
2
‖W‖2

F + C
N∑

i=1

‖aT
i − (xT

i W + b)‖2
F , (1)

where W = [w1,w2, · · · ,wj , · · · ,wm] is the weight
matrix, ai = [a1

i , a
2
i , · · · , am

i ]T is the training attribute
vector, and b = [b1, b2, · · · , bm] is the bias term. The
model parameters W are estimated by solving an equality-
constrained Quadratic Programming Problem, which has a
closed-form global optimal solution as follows:[

W
b

]
= −(QT Q)−1QT P,

where positive semi-definite matrix Q and matrix P are
given as

Q =
[
2C

∑N
i=1 xixT

i + I 2C
∑N

i=1 xi

2C
∑N

i=1 xT
i 2CN

]
,

P =
[
−2C

∑N
i=1 xiaT

i

−2C
∑N

i=1 aT
i

]
.

The trade-off parameter C is determined by cross valida-
tion.

The weight matrix W plays an important role in trans-
ferring information between tasks thus modelling the cor-
relation between different attributes. In particular, with
the same feature representation, for each attribute aj

i , j =
1, 2, · · · ,m, we formulate our model to jointly weigh each
attribute. In Equation (1), the jth column of matrix W is
employed to weigh the imagery feature vector xi for the jth
binary attribute in corresponding attribute learning, i.e. the
jth element of ai. Since the residual error of all attribute
learning tasks are penalized jointly by the Frobenius-norm,
this multi-output model can capture the correlation between
different attributes explicitly.

3.3. Mapping Attributes to Scalar Output

To estimate the mapping between a and y, first the low-
level feature x is mapped onto our cumulative attribute
space using the learned multi-output regression model
above. With each image now represented as âi ∈ Rm

and the corresponding label (ground truth) yi ∈ R, where
i = 1, 2 . . . N, a second-layer output regression model is
learned. Note, this regression model has a single scalar out-
put and any existing regression models used in the literature
for either age estimation or crowd counting can be readily
applied.

4. Experiments
4.1. Datasets & Settings

Datasets – For age estimation, two widely used benchmark-
ing datasets FG-NET [7, 13, 15, 35] and MORPH [7, 13]
were used. Both datasets are designed primarily for learn-
ing person-independent age estimator and contain people of
different ethnical origins. For crowd counting, experiments
were conducted on the benchmarking UCSD [4, 5, 8] and
the Mall [8] datasets which feature an outdoor and an indoor
scene respectively. Details in Table 1 show that among the
four datasets, FG-NET is the most sparse in terms of the av-
erage number of samples per scalar output value (MORPH
is 5 times more densely sampled).

Data Ni/f R

FG-NET [13] 1002 0–69
MORPH [7] 5475 16–77
UCSD [4] 2000 11–46
Mall [8] 2000 13–53

Table 1. Dataset details: Ni/f = number of images/frames, R =
range of scalar output value.

Features – For age estimation, the low level image fea-
tures are Active Appearance Model features [9]. This
feature representation is widely used in recent approaches
[7, 13, 15, 32, 33, 35]. For crowd counting, three types of
image features, i.e. foreground segments, edge features, and
local texture features, are adopted as in [4, 8]. Note that, to
use these features, all frames of crowd databases were trans-
formed to gray-scale prior to feature extraction.
Settings – For FG-NET, we followed the same leave-one-
person-out setting as in [7, 15, 32, 33, 35]. For MORPH we
randomly split the dataset into 80% training data and the
rest 20% testing data and repeated the experiments 30 times
as in [7]. For crowd counting, we followed the same train-
ing and testing partitions as in [8], i.e. we employed Frames
601 − 1400 in UCSD dataset and Frames 1 − 800 in Mall
dataset respectively for training, while the rest frames were
used for testing. For the single output regression model
(Section 3.3), Support Vector Regression (SVR) with RBF
kernel and Ridge Regression (RR) were employed for age
estimation and crowd counting respectively, owing to their
strong performance reported in the literature for age [15, 16]
and crowd [8] respectively. However, any regression mod-
els can be used.
Evaluation Metrics – For age estimation, we employed
two evaluation metrics, namely mean absolute error (mae)
and cumulative score (cs), which was first defined in [13]
and we set the same error level 5 as in [7]. Three metrics
employed in [8], namely mean absolute error (mae), mean
squared error (mse), and mean deviation error (mde) were
employed for evaluating the performance of crowd count-
ing. Among all five metrics, only for cs higher value means
better performance.
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4.2. Comparison with State-of-the-Arts

Method FG-NET [13] MORPH [7]
mae cs mae cs

AGES [13] 6.77 – 8.83 –
RUN [33] 5.78 – – –
Ranking [32] 5.33 – – –
RED-SVM [6] 5.24 – 6.49 –
LARR [15] 5.07 – – –
MTWGP [35] 4.83 – 6.28 –
OHRank [7] 4.85 74.4% 5.69 56.3%
SVR [15] 5.66 68.0% 5.77 57.1%
CA-SVR 4.67 74.5% 5.88 57.9%

Table 2. Age estimation performance comparison.

Age estimation – Our model (CA-SVR) is compared with
a number of recently published results in Table 2. Most of
the methods compared are regression based except AGES
[13], RED-SVM [6] and OHRank [7], and use the same
AAM features except AGES [13]. For FG-NET dataset, our
model obtained the best results so far on both mae and cs
metrics. Note that compared with SVR [15], identical low
level feature and single output regression models were used.
The only difference is in the input to the regression model:
low level feature directly for SVR and our cumulative at-
tributes for CA-SVR. This change of representation brings
an significantly improvement (17.5% decrease in mde and
9.6% relative increase in cs). The best performance reported
so far on FG-NET is the Ordinal Hyperplane Rank model
(OHRank) [7]. As discussed in Section 2, OHRank can also
cope with the sparse data problem. However, as shown in
Section 4.6, it is in the order of four magnitudes slower than
our model in model training1. On the MORPH dataset, our
CA-SVR gives comparable result to the best reported so far
(OHRank) on mae, but best performance measured by cs.
As the key difference between the FG-NET and MORPH
dataset is data sparsity and the number of age groups with-
out samples, it is evident from these results that the advan-
tage of our cumulative attribute based regression model is
more significant given sparse and imbalanced data. This is
further supported by our missing data experiments reported
in Section 4.4.

Method UCSD [4] Mall [8]
mae mse mde mae mse mde

LSSVR [31] 2.20 7.29 0.107 3.51 18.2 0.108
KRR [1] 2.16 7.45 0.107 3.51 18.1 0.108
RFR [23] 2.42 8.47 0.116 3.91 21.5 0.121
GPR [4] 2.24 7.97 0.112 3.72 20.1 0.115
RR [8] 2.25 7.82 0.110 3.59 19.0 0.110
CA-RR 2.07 6.86 0.102 3.43 17.7 0.105

Table 3. Crowd counting performance comparison.

Crowd counting – Table 3 compares crowd estimation per-
formances of six different methods, all based on regression,

1The results of OHRank were based on our implementation and are
slightly lower than those reported in [7].

using the two benchmarking datasets. The result shows that
the cumulative attribute based model (CA-RR) performs the
best for both datasets and using all three metrics. The most
direct effect of using our cumulative attribute representa-
tion can be seen by comparing RR [8] with CA-RR. CA-RR
clearly outperforms RR using all three measures. Since both
have the same low level feature input and use the same sin-
gle output regression model, the performance gain can only
be explained by the superior representation by our cumula-
tive attribute space. Improved performance can also been
seen by comparing CA-RR with a number of recently pro-
posed models [1, 4, 23, 31], all of which use the same fea-
tures as input and differ only in the regression model used.

4.3. Cumulative vs. Non-Cumulative Attributes

Methods FG-NET [13] MORPH [7]
mae cs mae cs

NCA-SVR 8.95 41.8% 7.28 44.2%
CA-SVR 4.67 74.5% 5.88 57.9%

Table 4. Cumulative vs. non-cumulative attributes on age estima-
tion.

Methods UCSD [4] Mall [8]
mae mse mde mae mse mde

NCA-RR 2.85 11.9 0.137 4.31 25.8 0.131
CA-RR 2.07 6.86 0.102 3.43 17.7 0.105

Table 5. Cumulative vs. non-cumulative attributes on crowd count-
ing.

A key novelty of our model is the cumulative attribute
representation. As explained in Section 3.1, compared
with the conventional non-cumulative (NCA) attributes, the
unique characteristics of our cumulative attributes (CA) is
that data points of neighbouring scalar value are designed
to be close to each other in the attribute space. It is evi-
dent from Tables 4 and 5 that constructing such cumulative
attributes is a significant advantage for a regression model
that performs age estimation and crowd counting.

4.4. Against Sparse and Imbalanced Data

(a) FG-NET (b) MORPH

Figure 3. Age estimation performance with sparse and imbalanced
data measured using cumulative scores (the higher the better).

Figures 3 and 4 evaluate our model when the training
data become more and more sparse and imbalanced. Data of
certain age groups and certain crowd counts were removed
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(a) UCSD (b) Mall

Figure 4. Crowd counting performance measured by mean devia-
tion error (the lower the better).

to make the data more sparse and imbalanced. For age esti-
mation, since the two dataset have few missing age groups,
we randomly selected a fixed number of age groups, each
time to remove and then train the model. For the crowd
counting dataset, this way of removing data would be less
effective because the mapping between the low level fea-
tures and the scalar count numbers is more linear. There-
fore, a different strategy for removing samples is adopted.
That is, we start from the middle of count number (26− 30
for missing 10% count groups in our case) and then re-
move an entire chunk of count groups. It is evident from
Figures 3 and 4 when more training data were removed,
the performance of all the models degrades. However, our
model’s performance degraded more gracefully, resulting
in the bigger performance gain over both the non-attribute
based models (SVR and RR for age and crowd respectively)
and non-cumulative attribute methods. These results fur-
ther validate our early observation that the construction of
a cumulative attribute space is uniquely effective for coping
with sparse and imbalanced training data, a common prob-
lem in learning regression functions.

4.5. Learning Attributes Jointly vs. Independently

Methods FG-NET [13] UCSD [4]
Original Dataset mae cs mae mse mde
i-CA 4.73 73.7% 2.07 7.09 0.102
j-CA 4.67 74.5% 2.07 6.86 0.102
Missing 75% labels mae cs mae mse mde
i-CA 6.45 55.6% 2.87 13.3 0.139
j-CA 5.51 66.9% 2.79 12.6 0.137

Table 6. Jointly learning cumulative attributes (j-CA) vs. indepen-
dently learning cumulative attributes (i-CA).

Instead of learning all attributes jointly using our multi-
out regression model, experiments were conducted to learn
each attribute independently using a single out ridge regres-
sion model. Table 6 shows that comparing with the jointly
learned attributes, the independently learned attributes led
to poorer performance. In particular, for more imbalanced
data with the removal of 75% labels from the original train-
ing dataset, our joint learning model yields more significant
advantage on both the FG-NET age dataset and the UCSD

crowd dataset. This is because that for sparse data, infor-
mation sharing between attributes can contribute to improve
robustness because of jointly penalizing the errors in differ-
ent attributes.

4.6. Computational Cost

Methods Age (mins) Crowd (secs)
FG-NET [13] MORPH [7] UCSD [4] Mall [8]

OHRank 1.30× 104 3.02× 104 – –
SVR [15] 2.69× 100 2.08× 101 – –
RR [8] – – 0.70 0.67
CA 8.91× 10−1 6.10× 100 1.57 1.52

Table 7. Model training time required by different models.

Table 7 shows the training time for four different models.
It is evident that the proposed cumulative attribute based
model is extremely fast to learn owing to its closed form
solution based on a multi-output regression model (see Sec-
tion 3.2). For age estimation, it is even faster to train than
the non-attribute based model with the same single output
regression. The closest competitor for age estimation accu-
racy, OHRank [7] is four orders of magnitude (104) slower
than our model (under 7 mins). This is because after map-
ping the low level image features to the cumulative attribute
space, dimensionality reduction is achieved as a by-product
resulting faster single output regression model training. For
crowd counting, RR [8] is faster than CA. This is because
the cumulative attribute space has a similar dimension as the
original low-level feature and CA has the additional step of
estimating the attribute values. Nevertheless, both are very
fast to train (under 2 sec).

4.7. What is Learned by Cumulative Attributes?

To answer this question, Figures 5(a) and (c) visualise
the weight matrix W in Formulation (1) which shows how
different low level features are weighted for different scalar
value groups. For age estimation, the AAM features capture
the shape and texture characteristics of a human face. It is
known [10] that at earlier ages, the human aging process
is mainly reflected by the facial bone change (getting ma-
ture) resulting in shape changes. Entering adulthood, tex-
ture change gradually starts to play a more important role
because aging is now more concerned with skin changes
(e.g. having more wrinkles). Figures 5(a) and (b) show that
our learned cumulative attribute indeed capture this phe-
nomenon rather well. In particular, the shape features are
the most important ones that separate attributes correspond
to young ages (< 20), while texture features become more
and more important for elder ages. For crowd counting, the
30 low level features contain foreground segment area, edge
features and texture features. Segment and edge features
would in general be more sensitive to the different crowd-
edness levels compared to the texture feature. That is, more

7



A
p

p
ea

ra
n

ce
 

S
h

a
p

e 
T

ex
tu

re
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Figure 5. Visualization of the importance of different features for cumulative attributes. Weights of each type of features were averaged for
computing the weight ratio between different types of features.

people in the scene normally means larger foreground re-
gions and more edges. This is also reflected by the learned
weights shown in Figures 5(c) and (d).

5. Conclusion
We have introduced a novel cumulative attribute based

framework for solving a number of computer vision prob-
lems invoking the need for regression estimation. Noisy
and sparse low level visual features are mapped onto a cu-
mulative attribute space where each dimension is designed
specifically to give a clear semantic meaning that captures
how the scalar output (e.g. age, people count) changes con-
tinuously. It requires no additional human annotation to as-
sign attributes and can be estimated efficiently and robustly
given sparse and imbalanced training data. Extensive ex-
periments show the effectiveness and efficiency of the pro-
posed model for both age estimation and crowd counting.
This advantage of our approach is particularly significant
when the training data is sparse and imbalanced.
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