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Abstract

We present a new approach for activity modelling and anomaly detection based on
non-parametric Gaussian Process (GP) models. Speci®cally, GP regression models are
formulated to learn non-linear relationships between multi-object activity patterns ob-
served from semantically decomposed regions in complex scenes. Predictive distribu-
tions are inferred from the regression models to compare with the actual observations for
real-time anomaly detection. The use of a “exible, non-parametric model alleviates the
dif®cult problem of selecting appropriate model complexity encountered in parametric
models such as Dynamic Bayesian Networks (DBNs). Crucially, our GP models need
fewer parameters; they are thus less likely to over®t given sparse data. In addition, our
approach is robust to the inevitable noise in activity representation as noise is modelled
explicitly in the GP models. Experimental results on a public traf®c scene show that our
models outperform DBNs in terms of anomaly sensitivity, noise robustness, and “exibil-
ity in modelling complex activity.

1 Introduction

Activity modelling and automatic anomaly detection in video have received increasing
tention due to the recent large-scale deployments of surveillance cameras. These task
non-trivial because complex activity patterns in a busy public space involve multiple obje
interacting with each other over space and time, whilst anomalies are often rare, amb
ous and can be easily confused with noise caused by low image quality, unstable ligh
condition and occlusion.

Most existing approachesgl[5, 6, 8, 23, 25] have been devoted to parametric models
such as Hidden Markov Models (HMMs), or in a more general case, Dynamic Bayes
Networks (DBNs) due to their effectiveness in modelling temporal dynamics of activity pe
terns. However, learning a DBN structure wéhpropriate complexityi.e. the number of
hidden states, the state connectivity, and model topology) remains a dif®cult problem.
particular, most of the automatic model selection crite?ia?P] assume the availability of
suf®ciently large training sample size compared to the number of model parameters. M
complexity estimation becomes inaccurate when the training data is sparse or corrupte
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noise. Although one can specify a model structure based on prior knowledge, the task ci
be challenging with surveillance video data as the activity states and dynamics are often n
apparent and nor well de®ned. They also change over time. For a parametric model, or
the model complexity is ®xed, its expressive power is hampered/limited by the initial mode
structure. Adjusting model structure complexity on-line is nontrivial for a DBN that requires
re-learning new structure and re-estimating model parameters over time.

In this paper, we propose a novel approach based on non-parametric Gaussian Proc
(GP) models 15] for activity modelling and real-time anomaly detection. A complex wide-
area scene (see Figa)-(d) for example) naturally consists of a set of semantic regions; each
of the regions encapsulates different activity patterns which are correlated with each other ¢
ther explicitly or implicitly. Our approach aims to discover these semantic regions and mode
non-linear relationships among activity patterns observed from the regions using Gaussii
Processes. The understanding of these relationships is crucial in facilitating the detection
subtle anomalies that involve a group of objects, which are hard to detect by observing ir
dividual object alone. With the learned models, predictive distribution is computed on eac!
region and compared with the actual observation. Anomaly is “agged if the observation de
viates largely from the predictive distribution, which indicates that the learned relationshig
between different activity patterns is broken.

In the context of complex multi-object activity modelling, our approach has the follow-
ing advantages compared to the commonly deployed DBNs: (1) Our activity models ar
not speci®eda priori but instead the model complexity is automatically adjusted based on
the distribution and available data7. Hence,the dif®cult task of adjusting complexity
of model structure is avoided(2) Our models are less likely to have over®tting problem
compared to DBN. Our GP models only require a small number of hyper-parameters fc
modelling extensive and arbitrary functions. Therefore they are less prone to the over®ttir
problem [L6, 17]. (3) Our models are able to cope with noise explicitly, resulting in superior
robustness against the inevitable noise in activity representation. This is crucial for anoma
detection for which distinguishing noise and true anomalies is always challenging. In com
parison to the non-parametric approach proposed by Boiman and3taouf method does
not suffer from scalability issue as it does not need to store video patches over time fc
similarity comparison.

Gaussian Process (GP) models have been a popular non-parametric method for perfor
ing non-linear regressior2]] and classi®catior?p]. They have been recently adopted for
solving vision problems such as action recogniti@fi [and human motion modellindLB].
However, the visual data employed in the existing studies are collected in controlled enviror
ments. The data is therefore relatively clean as compared to the more noisy visual featur
typical in surveillance videos. Such data impose more challenges for regression models su
as GP. To the best of our knowledge, this study is the ®rst attempt in using non-parameti
GP models for complex activity modelling and anomaly detection in a busy public scene. Ti
better cope with noise, in this work we formulate a new one-step ahead prediction strateg
for robust real-time anomaly detection. We also introduce automatic inference on corre
lation strength among regional activities in a wide-area scene by employing an Automati
Relevance Determination (ARD]).B] covariance function in our GP models. The proposed
approach is evaluated using a public traf®c scene featured with complex multi-object ir
teractions. Experimental results show that our GP models outperform DBNs for activity
modelling and anomaly detection on sensitivity to anomaly, noise robustness and ~exibility
in learning from scarce training data.
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2 Activity Modelling and Anomaly Detection

2.1 Activity Representation

First, a method similar to that iri ), 11] is employed to automatically decompose a complex
scene intdN regionsr = fryjn= 1;:::;Ng according to the spatial-temporal distribution of
activity patterns observed in a training set of video sequences. In particular, the image sj
is ®rst divided into equal-sized blocks with 8 pixels each. Optic ow was computed using
Lucas-Kanade modelLP] over the whole image space. Flow vectors that are greater thar
threshold are deemed as reliable and averaged within each block to obtain local block act
patterns represented using the horizontal and vertical 'ow componéhtandvd,, where

b denotes the block index. Botify, andv, are 1D vectors computed over time (i.e. time
series). Correlation distances are computed among local block activity patterns to const
an af®nity matrix, which is then used as an input to a spectral clustering algogithfiof
semantic scene decomposition (see E{g)).

Second, regional activity patterns are represented based on local block activity patt
(u% andv%,). Speci®cally, the regional activity in a regigyis represented by two 1D vectors
Un andvy, which are obtained a, = appy, u%, andvy, = ébZrnVOb respectively. To obtain
a more compact and precise representation of the regional activity patterns, we computt
average values af, andv, at every interval of 50 non-overlapping frames (the interval is
chosen to smooth out noise with minimal loss of information). As a result, the averac
regional activity pattern is represented as a bivariant time seligs( Un:1;:::;Un:7), @and
Vn=(Vn1;::::Vn:T), WhereT is the total number of intervals used in the learning proces:
To further reduce the in uence of noise, a logistic function is applied to bgtand vy,

i.e Wy =(1+exp b)) 'andvA,=(1+exp bvn)) 1, whereb is setto 0.5. The
®nal regional activity features are then normalised to have zero mean and unit variance,
denoted agh, and,.

2.2 Gaussian Process Activity Modelling

Two GP regression models are constructed for each region to model fedtupeml ¥,
separately. Therefore we havdl P models giverN decomposed regions. The output
of a model is activity patterns observed at intervdtom the i-th regionr; and the in-
puts are the activity patterns observed at previous intérval from all the other regions

rijj=1,:::;N;j 6 i . Each GP model is thus a regression model that predicts the activi
pattern from each region in the next time interval using activity patterns in other regio
observed at present. This regression model is formally de®ned d$x) + e, wherex de-
notes an input vector of dimensi@h= N 1 att 1 andydenotes a one-dimensional scalar
output att. Gaussian Procesi{x) is speci®ed by its mean function(x) and covariance
functionk(x;x9. In this study, we assume zero-mean GP; therefore we denote the proces
f(x) GP(0;k(x;x9). We assume the noise presented between the output observations
GP as an independent Gaussian white neiseN (0;s2) with zero mean and varianee?.
Note thatx andy may refer to either one of the two featuresy, x = (X1;:::;X4;::1;%p)”
with xgq = uh 1dj=1::5;N;j6 i andy= d\. Atraining setD with M observations is
denotedd = f(xm,ym)jm 1;:::;Mg. The column inputs for aM cases are collected into
aD M matrix X, and the targets form a vectprso we denot® = ( X;y).

2.2.1 Covariance Functions

Covariance function plays an important role in GP because it encodes our assumptiol
continuity and smoothness of the GP functibfx). There are many possible covariance
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functions [L5], such as linear, Mat rn, rational quadratic and neural network. As our objec-
tive is to model relationships among activity patterns from different regions, we seek for ¢
covariance function capable of capturing the strength of in uence among regions of a bus
scene. To that end, we consider a covariance function that implements Automatic Rels
vance Determination (ARD)1[3] being suitable to our problem since it can determine how
relevant an input is to the prediction. An example of these covariance functions is square:
exponential covariance function, which has the following form

1
kse(x;x9 = s?exp 5 X xXX7sx x0 (1)
wheres ¢ de®nes the magnitude. We hae | 2| for an isotropic covariance function

an ARD-enabled covariance function. The characteristic length-skatesassociated with

the relative importance of different inputs to the predictioa, the larger the value of a
length-scale, the less relevant the input to the prediction. Adopting an ARD-enabled covar
ance function provides us with insights on the strength of correlations between each pair
regions.

The squared-exponential covariance function is a stationary covariance function whic
is invariant to translations in the input space. On the other hand, a nonstationary covarian
function is more realistic because it allows a model to adapt to functions whose smoothne
changes with the inputd §]. An example is the neural network covariance functiog [

| "
(= stsin 1 p— XK @
(1+ 2& SA (1+ 2K SA

in our models due to their different strengths.

Given a model with speci®c covariance function, the ®tness of this model to the data ci
be evaluated using the marginal likelihood conditioned on the hyper-parargetetsch is
given as

. 1 1. ..M
logp(yjX;q) = §y>K1y 5logiKj = log2p; ©)

whereq denotes the hyper-parameters that de®ne this covariance function and the uncor
lated Gaussian white noise, whilstis the covariance matrix withi; = k(xi;X;).

2.2.2 Hyper-parameters Estimation

The free parameters of a covariance function are known as hyper-parameters. Apart fra
ensuring good predictions, they also provide intuitive interpretation about the properties ¢
the data [5]. To optimise the hyper-parameters, we maximise the marginal likelihood in
Eqgn. ) using its partial derivatives w.r.t the hyper-parameters, which is given as

1 . 1., 19K, 1 1 L K
-logp(yiX;q)= Sy K "—K 7y Str K “—

fa; 2 faj 2 fq;

where tr denotes the trace. In this paper, the hyper-parameters are ®rst initialised to rand
values and optimised using conjugate gradient optimi&efp avoid being trapped at poor
local minima, multiple random initialisations are performed and the hyper-parameter set th:
returns the best marginal likelihood is chosen.

; (4)
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2.3 Activity Prediction and Anomaly Detection

Given a test vectok that consists of the past observationg atl from N 1 regions

computed as
T(x)=k> K+s2 'y

V(f)=k(x:;x) k> K+s2l ' ©)

k;

wheref (x ) is the mean an¥ (f ) is the variance of the predictive distribution, whikst

denotes the vector of covariance between the test vector aid treening cases.
Subsequently, we want to compute a local anomaly score to measure the deviation o

actual observation from the predictive distribution in each region. A straightforward meth

is to compute the squared residugl  f(x ) ? petween the actual observatignand the
mean prediction at each time interval. However, the squared residual does not take predi
uncertainty into account. We consider a more conservative local anomaly score in the fi
of predictive log-likelihood de®ned as

y f(x) "

scorg = logp(y jD;x )= %Iog 2ps? + 552 ; (6)

where predictive variance is computedsss= V (f )+ s2. From Eqn. §), it is clear that
a low local score will be obtained &2 has a large value. This occurs when the model i
uncertain about prediction when the function enters an area with limited training data.

To formulate a global anomaly score, we normalise and compute the sum of the
cal scores calculated from each region, that is sgpe= aﬂ:lWa wherescorg is
the normalised local score at region For anomaly detection, we set a detection thresh
old Th according to the detection rate/false alarm rate requirement for speci®c applica
scenarios. In particular, an interval (50 non-overlapping frames) is detected as anon
if scorgyonai > Th. In each detected interval, a region is identi®ed as being abnormal
SCOT® > & SCOrgopal

Note that although a one-step ahead prediction strategy is employed, multi-step at
prediction is possible by repeating single prediction iteratively with uncertainty propagatec
Though earlier prediction is enalble, multi-step ahead prediction is slower and less relie
than one-step ahead prediction. For reliable real-time anomaly detection, our one-step a
prediction strategy is appropriate. A common issue of using GP is that the time comple>
is O(M?) due to the inversion d¥l M matrix. The complexity can be reduced by adopting
Cholesky decompositioriLp] instead of inverting the matrix directly. In the case where we
have a ®xed set of training data, we can perform Cholesky decomposition of ine using
training set to enable real-time anomaly detection.

3 Experiments

Datasets- The dataset features a public road junction controlled by traf®c lights and do
inated by four traf®c “ows (see Fija)-(d)). Figurel(e)depicts the scene decomposition
result, showing the eight semantic regions discovered. The length of the video is appr
mately 60 minutes (89999 frames) captured with 3688 frame size at 25 fps. We used
the ®rst 10000 frames of the video (approximately 10% of the data) for training and
rest (79999 frames) for testing. Activity modelling and anomaly detection in this scene
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challenging due to: (1) complex interactions among vehicles and pedestrians, (2) changi
complexity of activity patterns caused by the changing traf®c volume over time, (3) nois!
observations caused by illumination change, shadows and video capturing noise.

() (b) (c) (d) (e)

Figure 1: A traf®c scene dominated by four different traf®c “ows (arranged in order): (a
vertical ow, (b) left and right turn, (c) rightward “ow, (d) leftward “ow. The semantic scene
decomposition according to the spatial distribution of activity patterns is shown in (e).

Ground truth - Ground truth was extracted from the testing set based on manual labelling
which includes atypical activities such as traf®c interruptions by emergency vehicles, illegi
u-turn, jaywalking, etc. The ground truth is summarised in Tdbleith examples being
shown in Fig.2. The average duration of anomalies is 4.3 seconds with the shortest interve
being 2.64 secs (66 frames) and the longest interval being 8.8 secs (220 frames). Some
the anomalies occurred across several regions, therefore being visually obvious due to t
large global visual changes.f}, cases 3 and 4), whilst others took place in a single region
and was supported by very weak visual evidence due to the short occurrence duration, sm
object size, and severe occlusiang, jaywalking cases and illegal u-turns).

Case(s) Anomaly description Total frames
(% from total)

1 An ambulance entered the junction using an improper lane of traf®c2(Eiy. 88 (0.0978)
2 A police vehicle entered the junction using an improper lane of traf®c ZHig). 95 (0.1056)
3 A ®re engine entered the junction from the left entrance and caused interruption&&6 (0.2000)

the vertical traf®c at both directions (Fic))
4 A ®re engine entered the junction from the right entrance and caused interruptioh32 (0.1467)

to the left-right turn traf®c (Fig2(d))
5 Strange driving behaviour of a left-turning car (Fige) 93 (0.1033)
6 A police vehicle entered the junction using an improper lane of traf®c Zfiy. 150 (0.1667)
7-14 Jaywalking (Fig2(g)) average: 105 (0.1167)
15-28 lllegal u-turn (Fig2(h)) average: 104 (0.1156)

Table 1: Ground truth.

Anomaly Detection using GP models We experimented with two types of covariance
functions (ARD-enabled and neural network) and two anomaly scoring strategies (square
residual and predictive log-likelihood). Receiving Operating Characteristic (ROC) curves
were generated by varying the detection threshold Th. The area under ROC (AUROC) wi
used as performance measure.

The AUROC obtained using different covariance functions and scoring strategies ar
summarised in Tabl2. It shows that predictive log-likelihood performed better than squared
residual because the former takes the predictive uncertainty into account. The neural-netwc
covariance function yielded the best result among all the covariance functions with an AU
ROC of 0.7643 whilst squared exponential + ARD outperformed the squared exponential
covariance function without ARD, indicating the effectiveness of modelling the relevancy of
input features with ARD.

The characteristic length-scalkdearned when adopting the ARD-enabled covariance
function (see Se@.2.7) provides useful insights on the strength of correlations among re-
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(a) Case 1: ambulance using an improper lane
§o

n traf®c ow

»

(d) Case 4: ®re engine causing interruptions to left-right tur

La] JibSe . __ By | i

(h) Case 18: illegal u-turn

Figure 2: Examples of detected anomaly using the GP models with neural network cov
ance function (abnormal regions are highlighted in red colour whilst the key object is hic
lighted with a box). The threshold was set to a value to keep the FPR at 0.05. Case 5 ir
and Case 13 in (g) were missed at this threshold setting (the objects that caused the anon
are highlighted in green boxes).
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Covariance function Squared Predictive
residual  log-likelihood
Squared exponential 0.7351 0.7385
Squared exponential + ARD  0.7509 0.7556
Neural network 0.7464 0.7643

Table 2: Comparison of AUROC yielded
by different covariance functions and
scoring strategies in anomaly detection. .

Figure 3: The ROC curves.
gions. For instance, examining the hyper-parameters of the GP model for féatnegion
4 shows that the length-scale of regions 1, 2, 3, 5, 6, 7 and 8 are [4.4509, 3.9672, 0.371
5.1920, 4.3222, 1023.5, 3.7875] respectively. The region which has the lowest length-sca
is region 3, implying that it has the highest in"uence on the activity patterns in region 4,
whilst region 7 is effectively irrelevant to the prediction. This understanding inferred by our
models agrees with the human understanding of the traf®c activity patterns in this particul.
scene. Speci®cally, vehicles in region 4 typically need to pass region 3 ®rst; the activitit
in the two regions are thus closely correlated. The regional activities in region 7 are mainl
from pedestrians walking on the pavement, which has little relevance on vehicle activities i
region 3.

Some examples of detected anomaly using the GP models with neural network covai
ance function are depicted in Fig. It is observed that most of the anomalies caused by
emergency vehicles were successfully detected by the GP models. For instance, the ¢
models detected the ambulance in Ei(p)that entered the junction using an improper lane,
as its activity patterns in region 2 were contrary to the predictive distribution computed usiny
the past observations from other regions. Some of the anomalies such as jaywalking cas
are too subtle and dif®cult to detect due to severe occlusion and small object size.

Figure4 shows some false alarms. Figuegs)and4(b) are examples of false alarms
caused by large objects,g, buses moving across the scene. False alarm intEigrefers to
activities that are insuf®ciently captured in the training set. The fact that region 6 was emp!
deviated from the model's prediction as the vehicles in region 1 were expected to procee
into region 6 when the vertical traf®c “ow started as captured in the training set. This typ:
of mis-detections is caused by statistical infrequency and can be solved by including mol
data during the training stage.

(@) (b) (c)
Figure 4: False alarms by the GP models.

Anomaly Detection £ GP vs HMM: In this experiment, we compared the anomaly detec-
tion performance of our approach against an HMM with continuous observation densitie
and full covariance matrix. Observation node of each hidden state has 16-dimensional sinc
Gaussian (8 regions with 2 features each) to model the activity patterns from the decon
posed regions. The number of hidden states were varied from 2 to 10 with trials on differer
state connectivities,e. Bakis (left-right) model and ergodic (fully-connected) modid][

as well as different initialisation strategies (random and uniform initialisation) on the state
transitional distributions. The parameters of the observation nodes were initialised usin
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thek-means clustering results and estimated using the Baum-Welch algofithithe log-
likelihood of observation computed using the model was employed as a measure of ab
mality at each interval.

Through exhaustive testing, a four-state ergodic HMM with random initialisation on tt
transitional distribution was found to yield the best result among different settings of t
HMM. Its performance on anomaly detection is compared with our GP models irBFig.
which shows that our models outperform the best HMMs. It is noted that our GP mod
are more sensitive to anomalies caused by multiple regional activitigs ¢ases 3 and
4). However, the HMM performed better in the cases of illegal u-turning due to the HMM
capability in modelling temporal dynamics. It is worth mentioning that our GP models can
extended to model temporal dynamics explicitly based on the Gaussian Process Dynan
Models proposed ini[g].

Sensitivity to Noise + GP vs HMM: We also compared the capability of our GP models
with the HMM on handling noisy observations. In this experiment, additive Gaussian no
was introduced and we gradually increased the noise level in the test cases by varyinc
variance of Gaussian noise from 0 to 0.2. As can be seen fronbfg.the performance
of both methods generally decreased along with the increase of noise variance. Howev
is clear that the GP models outperformed the HMM in dealing with noisy observations. T
superior robustness of the GP models to noise is mainly due to its capability in modell
noise explicitly.

Sensitivity to Training Sample Size + GP vs HMM: The objective of this experiment is
to compare the performance of the GP models and the HMM with different training sam|
sizes. We varied the number of training samples from 100 to the full 200 cases (each ¢
corresponds to an interval of 50 frames) and observed the trend of the AUROC. As car
seen in Fig5(b), the GP models consistently outperformed the HMM with different training
sample sizes. Importantly, although the performances of both models decreased, oul
models dropped more graceful, resulting in bigger difference given smaller training sam
size. As only 48 free parameters are required for 16 GP models (3 each) used in our appr¢
compared with 623 parameters needed by the HMM, this result is expected because
parameters means less prone to over®tting given sparse data. It is also found that whe
number of cases was less than 140, an HMM with full covariance matrix failed to learn frc
the data and its covariance matrix had to be switched to diagonal, which essentially assu
that different regional activities were independent. Again, this demonstrates the in exibil
of using a parametric model for activity modelling due to the dif®culties in determinir
optimal model complexity given insuf®cient data.

(a) Sensitivity to noise (b) Sensitivity to small training sample size
Figure 5: Comparison of the GP models with the HMM in terms of (a) sensitivity to nois
and (b) sensitivity to training sample size.
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4 Conclusion

We have presented a novel approach for activity modelling and anomaly detection usin
Gaussian Process (GP) models. In particular, GP regression models are developed to le
the relationship among multi-object activity patterns observed from semantic regions in con
plex scenes. In addition, a novel one-step ahead prediction strategy was formulated to det
subtle anomalies, with uncertainty being modelled explicitly for a more reliable detection
From our extensive experiments, we demonstrated that the proposed approach outperforn
an optimised Hidden Markov Model on both sensitivity to anomaly and robustness to noise
More importantly, the proposed approach avoids the dif®cult task of adjusting model conr
plexity especially when the training data is scarce.
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