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Abstract

We present a new approach for activity modelling and anomaly detection based on
non-parametric Gaussian Process (GP) models. Speci®cally, GP regression models are
formulated to learn non-linear relationships between multi-object activity patterns ob-
served from semantically decomposed regions in complex scenes. Predictive distribu-
tions are inferred from the regression models to compare with the actual observations for
real-time anomaly detection. The use of a ¯exible, non-parametric model alleviates the
dif®cult problem of selecting appropriate model complexity encountered in parametric
models such as Dynamic Bayesian Networks (DBNs). Crucially, our GP models need
fewer parameters; they are thus less likely to over®t given sparse data. In addition, our
approach is robust to the inevitable noise in activity representation as noise is modelled
explicitly in the GP models. Experimental results on a public traf®c scene show that our
models outperform DBNs in terms of anomaly sensitivity, noise robustness, and ¯exibil-
ity in modelling complex activity.

1 Introduction

Activity modelling and automatic anomaly detection in video have received increasing at-
tention due to the recent large-scale deployments of surveillance cameras. These tasks are
non-trivial because complex activity patterns in a busy public space involve multiple objects
interacting with each other over space and time, whilst anomalies are often rare, ambigu-
ous and can be easily confused with noise caused by low image quality, unstable lighting
condition and occlusion.

Most existing approaches [4, 5, 6, 8, 23, 25] have been devoted to parametric models
such as Hidden Markov Models (HMMs), or in a more general case, Dynamic Bayesian
Networks (DBNs) due to their effectiveness in modelling temporal dynamics of activity pat-
terns. However, learning a DBN structure withappropriate complexity(i.e. the number of
hidden states, the state connectivity, and model topology) remains a dif®cult problem. In
particular, most of the automatic model selection criteria [2, 22] assume the availability of
suf®ciently large training sample size compared to the number of model parameters. Model
complexity estimation becomes inaccurate when the training data is sparse or corrupted by
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noise. Although one can specify a model structure based on prior knowledge, the task can
be challenging with surveillance video data as the activity states and dynamics are often not
apparent and nor well de®ned. They also change over time. For a parametric model, once
the model complexity is ®xed, its expressive power is hampered/limited by the initial model
structure. Adjusting model structure complexity on-line is nontrivial for a DBN that requires
re-learning new structure and re-estimating model parameters over time.

In this paper, we propose a novel approach based on non-parametric Gaussian Process
(GP) models [15] for activity modelling and real-time anomaly detection. A complex wide-
area scene (see Fig.1(a)-(d) for example) naturally consists of a set of semantic regions; each
of the regions encapsulates different activity patterns which are correlated with each other ei-
ther explicitly or implicitly. Our approach aims to discover these semantic regions and model
non-linear relationships among activity patterns observed from the regions using Gaussian
Processes. The understanding of these relationships is crucial in facilitating the detection of
subtle anomalies that involve a group of objects, which are hard to detect by observing in-
dividual object alone. With the learned models, predictive distribution is computed on each
region and compared with the actual observation. Anomaly is ¯agged if the observation de-
viates largely from the predictive distribution, which indicates that the learned relationship
between different activity patterns is broken.

In the context of complex multi-object activity modelling, our approach has the follow-
ing advantages compared to the commonly deployed DBNs: (1) Our activity models are
not speci®eda priori but instead the model complexity is automatically adjusted based on
the distribution and available data [17]. Hence,the dif®cult task of adjusting complexity
of model structure is avoided. (2) Our models are less likely to have over®tting problem
compared to DBN. Our GP models only require a small number of hyper-parameters for
modelling extensive and arbitrary functions. Therefore they are less prone to the over®tting
problem [16, 17]. (3) Our models are able to cope with noise explicitly, resulting in superior
robustness against the inevitable noise in activity representation. This is crucial for anomaly
detection for which distinguishing noise and true anomalies is always challenging. In com-
parison to the non-parametric approach proposed by Boiman and Irani [3], our method does
not suffer from scalability issue as it does not need to store video patches over time for
similarity comparison.

Gaussian Process (GP) models have been a popular non-parametric method for perform-
ing non-linear regression [21] and classi®cation [20]. They have been recently adopted for
solving vision problems such as action recognition [26] and human motion modelling [18].
However, the visual data employed in the existing studies are collected in controlled environ-
ments. The data is therefore relatively clean as compared to the more noisy visual features
typical in surveillance videos. Such data impose more challenges for regression models such
as GP. To the best of our knowledge, this study is the ®rst attempt in using non-parametric
GP models for complex activity modelling and anomaly detection in a busy public scene. To
better cope with noise, in this work we formulate a new one-step ahead prediction strategy
for robust real-time anomaly detection. We also introduce automatic inference on corre-
lation strength among regional activities in a wide-area scene by employing an Automatic
Relevance Determination (ARD) [13] covariance function in our GP models. The proposed
approach is evaluated using a public traf®c scene featured with complex multi-object in-
teractions. Experimental results show that our GP models outperform DBNs for activity
modelling and anomaly detection on sensitivity to anomaly, noise robustness and ¯exibility
in learning from scarce training data.
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2 Activity Modelling and Anomaly Detection
2.1 Activity Representation
First, a method similar to that in [10, 11] is employed to automatically decompose a complex
scene intoN regions,r = f rnjn = 1; : : : ;Ng according to the spatial-temporal distribution of
activity patterns observed in a training set of video sequences. In particular, the image space
is ®rst divided into equal-sized blocks with 8� 8 pixels each. Optic ¯ow was computed using
Lucas-Kanade model [12] over the whole image space. Flow vectors that are greater than a
threshold are deemed as reliable and averaged within each block to obtain local block activity
patterns represented using the horizontal and vertical ¯ow components,u0

b andv0
b, where

b denotes the block index. Bothu0
b andv0

b are 1D vectors computed over time (i.e. time
series). Correlation distances are computed among local block activity patterns to construct
an af®nity matrix, which is then used as an input to a spectral clustering algorithm [24] for
semantic scene decomposition (see Fig.1(e)).

Second, regional activity patterns are represented based on local block activity patterns
(u0

b andv0
b). Speci®cally, the regional activity in a regionrn is represented by two 1D vectors

un andvn, which are obtained asun = å b2rn u0
b, andvn = å b2rn v0

b respectively. To obtain
a more compact and precise representation of the regional activity patterns, we compute the
average values ofun andvn at every interval of 50 non-overlapping frames (the interval is
chosen to smooth out noise with minimal loss of information). As a result, the averaged
regional activity pattern is represented as a bivariant time series:un = ( un;1; : : : ;un;T ), and
vn = ( vn;1; : : : ;vn;T ), whereT is the total number of intervals used in the learning process.
To further reduce the in¯uence of noise, a logistic function is applied to bothun andvn,
i.e. Ãun;t = ( 1+ exp( bun;t ))

 1 and Ãvn;t = ( 1+ exp( bvn;t ))
 1, whereb is set to 0.5. The

®nal regional activity features are then normalised to have zero mean and unit variance, and
denoted asÃun andÃvn.

2.2 Gaussian Process Activity Modelling

Two GP regression models are constructed for each region to model featuresÃun and Ãvn
separately. Therefore we have 2N GP models givenN decomposed regions. The output
of a model is activity patterns observed at intervalt from the i-th regionr i and the in-
puts are the activity patterns observed at previous intervalt  1 from all the other regions�

r j j j = 1; : : : ;N; j 6= i
	

. Each GP model is thus a regression model that predicts the activity
pattern from each region in the next time interval using activity patterns in other regions
observed at present. This regression model is formally de®ned asy = f (x) + e, wherex de-
notes an input vector of dimensionD = N 1 att  1 andy denotes a one-dimensional scalar
output att. Gaussian Processf (x) is speci®ed by its mean functionm(x) and covariance
functionk(x;x0). In this study, we assume zero-mean GP; therefore we denote the process as
f (x) � GP(0;k(x;x0)) . We assume the noise presented between the output observations and
GP as an independent Gaussian white noisee � N (0;s 2

n ) with zero mean and variances 2
n .

Note thatx andy may refer to either one of the two features,e.g., x = ( x1; : : : ;xd; : : : ;xD)>

with xd =
�

Ãu j ; t 1j j = 1; : : : ;N; j 6= i
	

andy = Ãui; t . A training setD with M observations is
denotedD = f (xm;ym)jm= 1; : : : ;Mg. The column inputs for allM cases are collected into
aD � M matrixX, and the targets form a vectory, so we denoteD = ( X;y).

2.2.1 Covariance Functions

Covariance function plays an important role in GP because it encodes our assumption on
continuity and smoothness of the GP functionf (x). There are many possible covariance
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functions [15], such as linear, Mat rn, rational quadratic and neural network. As our objec-
tive is to model relationships among activity patterns from different regions, we seek for a
covariance function capable of capturing the strength of in¯uence among regions of a busy
scene. To that end, we consider a covariance function that implements Automatic Rele-
vance Determination (ARD) [13] being suitable to our problem since it can determine how
relevant an input is to the prediction. An example of these covariance functions is squared-
exponential covariance function, which has the following form

kSE(x;x0) = s 2
f exp

�
 

1
2

 
x  x0� > S

 
x  x0�

�
; (1)

wheres f de®nes the magnitude. We haveS = l  2I for an isotropic covariance function
(a function only ofjx  x0j) [15] and S = diag(lll ) 2 with lll = f ldg andd 2 f 1; : : : ;Dg for
an ARD-enabled covariance function. The characteristic length-scaleslll are associated with
the relative importance of different inputs to the prediction,i.e. the larger the value of a
length-scale, the less relevant the input to the prediction. Adopting an ARD-enabled covari-
ance function provides us with insights on the strength of correlations between each pair of
regions.

The squared-exponential covariance function is a stationary covariance function which
is invariant to translations in the input space. On the other hand, a nonstationary covariance
function is more realistic because it allows a model to adapt to functions whose smoothness
changes with the inputs [15]. An example is the neural network covariance function [19]

kNN(x;x0) = s 2
f sin 1

!
2Äx> SÄx0

p
(1+ 2Äx> SÄx)(1+ 2Äx> SÄx)

"

; (2)

whereÄx = ( 1;x1; : : : ;xD)> andS = l  2I . Both types of covariance functions are considered
in our models due to their different strengths.

Given a model with speci®c covariance function, the ®tness of this model to the data can
be evaluated using the marginal likelihood conditioned on the hyper-parametersqqq, which is
given as

logp(yjX;qqq) =  
1
2

y> K 1y  
1
2

logjKj  
M
2

log2p; (3)

whereqqq denotes the hyper-parameters that de®ne this covariance function and the uncorre-
lated Gaussian white noise, whilstK is the covariance matrix withKi j = k(xi ;x j ).

2.2.2 Hyper-parameters Estimation

The free parameters of a covariance function are known as hyper-parameters. Apart from
ensuring good predictions, they also provide intuitive interpretation about the properties of
the data [15]. To optimise the hyper-parameters, we maximise the marginal likelihood in
Eqn. (3) using its partial derivatives w.r.t the hyper-parameters, which is given as

¶
¶qj

logp(yjX;qqq) =
1
2

y> K 1 ¶K
¶qj

K 1y  
1
2

tr
�

K 1 ¶K
¶qj

�
; (4)

where tr denotes the trace. In this paper, the hyper-parameters are ®rst initialised to random
values and optimised using conjugate gradient optimiser [9]. To avoid being trapped at poor
local minima, multiple random initialisations are performed and the hyper-parameter set that
returns the best marginal likelihood is chosen.
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2.3 Activity Prediction and Anomaly Detection

Given a test vectorx� that consists of the past observations att  1 from N  1 regions
f r jg, where j = 1; : : : ;N; j 6= i, the one-step ahead predictive distribution of regionr i at t is
computed as

f (x� ) = k>
�

 
K + s 2

n I
�  1y;

V ( f� ) = k(x� ;x� )  k>
�

 
K + s 2

n I
�  1k � ;

(5)

where f (x� ) is the mean andV ( f� ) is the variance of the predictive distribution, whilstk �
denotes the vector of covariance between the test vector and theM training cases.

Subsequently, we want to compute a local anomaly score to measure the deviation of the
actual observation from the predictive distribution in each region. A straightforward method
is to compute the squared residual

 
y�  f (x� )

� 2
between the actual observationy� and the

mean prediction at each time interval. However, the squared residual does not take predictive
uncertainty into account. We consider a more conservative local anomaly score in the form
of predictive log-likelihood de®ned as

scoren =  logp(y� jD ;x� ) =
1
2

log
 
2ps 2

�
�

+

 
y�  f (x� )

� 2

2s 2
�

; (6)

where predictive variance is computed ass 2
� = V ( f� ) + s 2

n . From Eqn. (6), it is clear that
a low local score will be obtained ifs 2

� has a large value. This occurs when the model is
uncertain about prediction when the function enters an area with limited training data.

To formulate a global anomaly score, we normalise and compute the sum of the lo-
cal scores calculated from each region, that is scoreglobal = å N

n= 1scoren wherescoren is
the normalised local score at regionrn. For anomaly detection, we set a detection thresh-
old Th according to the detection rate/false alarm rate requirement for speci®c application
scenarios. In particular, an interval (50 non-overlapping frames) is detected as anomaly
if scoreglobal > Th. In each detected interval, a region is identi®ed as being abnormal if
scoren > 1

N scoreglobal.
Note that although a one-step ahead prediction strategy is employed, multi-step ahead

prediction is possible by repeating single prediction iteratively with uncertainty propagated [7].
Though earlier prediction is enalble, multi-step ahead prediction is slower and less reliable
than one-step ahead prediction. For reliable real-time anomaly detection, our one-step ahead
prediction strategy is appropriate. A common issue of using GP is that the time complexity
is O(M3) due to the inversion ofM � M matrix. The complexity can be reduced by adopting
Cholesky decomposition [15] instead of inverting the matrix directly. In the case where we
have a ®xed set of training data, we can perform Cholesky decomposition of¯ine using the
training set to enable real-time anomaly detection.

3 Experiments

Datasets- The dataset features a public road junction controlled by traf®c lights and dom-
inated by four traf®c ¯ows (see Fig.1(a)-(d)). Figure1(e)depicts the scene decomposition
result, showing the eight semantic regions discovered. The length of the video is approxi-
mately 60 minutes (89999 frames) captured with 360� 288 frame size at 25 fps. We used
the ®rst 10000 frames of the video (approximately 10% of the data) for training and the
rest (79999 frames) for testing. Activity modelling and anomaly detection in this scene is



6 LOY et al.: MODELLING MULTI-OBJECT ACTIVITY BY GAUSSIAN PROCESSES

challenging due to: (1) complex interactions among vehicles and pedestrians, (2) changing
complexity of activity patterns caused by the changing traf®c volume over time, (3) noisy
observations caused by illumination change, shadows and video capturing noise.

(a) (b) (c) (d) (e)

Figure 1: A traf®c scene dominated by four different traf®c ¯ows (arranged in order): (a)
vertical ¯ow, (b) left and right turn, (c) rightward ¯ow, (d) leftward ¯ow. The semantic scene
decomposition according to the spatial distribution of activity patterns is shown in (e).

Ground truth - Ground truth was extracted from the testing set based on manual labelling,
which includes atypical activities such as traf®c interruptions by emergency vehicles, illegal
u-turn, jaywalking, etc. The ground truth is summarised in Table1 with examples being
shown in Fig.2. The average duration of anomalies is 4.3 seconds with the shortest interval
being 2.64 secs (66 frames) and the longest interval being 8.8 secs (220 frames). Some of
the anomalies occurred across several regions, therefore being visually obvious due to the
large global visual changes (e.g., cases 3 and 4), whilst others took place in a single region
and was supported by very weak visual evidence due to the short occurrence duration, small
object size, and severe occlusion (e.g., jaywalking cases and illegal u-turns).

Case(s) Anomaly description Total frames
(% from total)

1 An ambulance entered the junction using an improper lane of traf®c (Fig.2(a)) 88 (0.0978)
2 A police vehicle entered the junction using an improper lane of traf®c (Fig.2(b)) 95 (0.1056)
3 A ®re engine entered the junction from the left entrance and caused interruptions to

the vertical traf®c at both directions (Fig.2(c))
180 (0.2000)

4 A ®re engine entered the junction from the right entrance and caused interruptions
to the left-right turn traf®c (Fig.2(d))

132 (0.1467)

5 Strange driving behaviour of a left-turning car (Fig.2(e)) 93 (0.1033)
6 A police vehicle entered the junction using an improper lane of traf®c (Fig.2(f)) 150 (0.1667)
7-14 Jaywalking (Fig.2(g)) average: 105 (0.1167)
15-28 Illegal u-turn (Fig.2(h)) average: 104 (0.1156)

Table 1: Ground truth.

Anomaly Detection using GP models: We experimented with two types of covariance
functions (ARD-enabled and neural network) and two anomaly scoring strategies (squared
residual and predictive log-likelihood). Receiving Operating Characteristic (ROC) curves
were generated by varying the detection threshold Th. The area under ROC (AUROC) was
used as performance measure.

The AUROC obtained using different covariance functions and scoring strategies are
summarised in Table2. It shows that predictive log-likelihood performed better than squared
residual because the former takes the predictive uncertainty into account. The neural-network
covariance function yielded the best result among all the covariance functions with an AU-
ROC of 0.7643, whilst squared exponential + ARD outperformed the squared exponential
covariance function without ARD, indicating the effectiveness of modelling the relevancy of
input features with ARD.

The characteristic length-scaleslll learned when adopting the ARD-enabled covariance
function (see Sec.2.2.1) provides useful insights on the strength of correlations among re-
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(a) Case 1: ambulance using an improper lane

(b) Case 2: police vehicle using an improper lane

(c) Case 3: ®re engine causing interruptions to vertical traf®c ¯ow

(d) Case 4: ®re engine causing interruptions to left-right turn traf®c ¯ow

(e) Case 5: Strange driving behaviour of a left-turning car

(f) Case 6: police vehicle using an improper lane

(g) Case 13: jaywalking

(h) Case 18: illegal u-turn

Figure 2: Examples of detected anomaly using the GP models with neural network covari-
ance function (abnormal regions are highlighted in red colour whilst the key object is high-
lighted with a box). The threshold was set to a value to keep the FPR at 0.05. Case 5 in (e)
and Case 13 in (g) were missed at this threshold setting (the objects that caused the anomalies
are highlighted in green boxes).
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Covariance function Squared
residual

Predictive
log-likelihood

Squared exponential 0.7351 0.7385
Squared exponential + ARD 0.7509 0.7556
Neural network 0.7464 0.7643

Table 2: Comparison of AUROC yielded
by different covariance functions and
scoring strategies in anomaly detection.

Figure 3: The ROC curves.

gions. For instance, examining the hyper-parameters of the GP model for featureÃv at region
4 shows that the length-scale of regions 1, 2, 3, 5, 6, 7 and 8 are [4.4509, 3.9672, 0.3717,
5.1920, 4.3222, 1023.5, 3.7875] respectively. The region which has the lowest length-scale
is region 3, implying that it has the highest in¯uence on the activity patterns in region 4,
whilst region 7 is effectively irrelevant to the prediction. This understanding inferred by our
models agrees with the human understanding of the traf®c activity patterns in this particular
scene. Speci®cally, vehicles in region 4 typically need to pass region 3 ®rst; the activities
in the two regions are thus closely correlated. The regional activities in region 7 are mainly
from pedestrians walking on the pavement, which has little relevance on vehicle activities in
region 3.

Some examples of detected anomaly using the GP models with neural network covari-
ance function are depicted in Fig.2. It is observed that most of the anomalies caused by
emergency vehicles were successfully detected by the GP models. For instance, the GP
models detected the ambulance in Fig.2(a)that entered the junction using an improper lane,
as its activity patterns in region 2 were contrary to the predictive distribution computed using
the past observations from other regions. Some of the anomalies such as jaywalking cases
are too subtle and dif®cult to detect due to severe occlusion and small object size.

Figure4 shows some false alarms. Figures4(a) and4(b) are examples of false alarms
caused by large objects,e.g., buses moving across the scene. False alarm in Fig.4(c)refers to
activities that are insuf®ciently captured in the training set. The fact that region 6 was empty
deviated from the model's prediction as the vehicles in region 1 were expected to proceed
into region 6 when the vertical traf®c ¯ow started as captured in the training set. This type
of mis-detections is caused by statistical infrequency and can be solved by including more
data during the training stage.

(a) (b) (c)

Figure 4: False alarms by the GP models.

Anomaly Detection ± GP vs HMM: In this experiment, we compared the anomaly detec-
tion performance of our approach against an HMM with continuous observation densities
and full covariance matrix. Observation node of each hidden state has 16-dimensional single
Gaussian (8 regions with 2 features each) to model the activity patterns from the decom-
posed regions. The number of hidden states were varied from 2 to 10 with trials on different
state connectivities,i.e. Bakis (left-right) model and ergodic (fully-connected) model [14],
as well as different initialisation strategies (random and uniform initialisation) on the state
transitional distributions. The parameters of the observation nodes were initialised using
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thek-means clustering results and estimated using the Baum-Welch algorithm [1]. The log-
likelihood of observation computed using the model was employed as a measure of abnor-
mality at each interval.

Through exhaustive testing, a four-state ergodic HMM with random initialisation on the
transitional distribution was found to yield the best result among different settings of the
HMM. Its performance on anomaly detection is compared with our GP models in Fig.3,
which shows that our models outperform the best HMMs. It is noted that our GP models
are more sensitive to anomalies caused by multiple regional activities (e.g., cases 3 and
4). However, the HMM performed better in the cases of illegal u-turning due to the HMM's
capability in modelling temporal dynamics. It is worth mentioning that our GP models can be
extended to model temporal dynamics explicitly based on the Gaussian Process Dynamical
Models proposed in [18].

Sensitivity to Noise ± GP vs HMM: We also compared the capability of our GP models
with the HMM on handling noisy observations. In this experiment, additive Gaussian noise
was introduced and we gradually increased the noise level in the test cases by varying the
variance of Gaussian noise from 0 to 0.2. As can be seen from Fig.5(a), the performance
of both methods generally decreased along with the increase of noise variance. However, it
is clear that the GP models outperformed the HMM in dealing with noisy observations. The
superior robustness of the GP models to noise is mainly due to its capability in modelling
noise explicitly.

Sensitivity to Training Sample Size ± GP vs HMM: The objective of this experiment is
to compare the performance of the GP models and the HMM with different training sample
sizes. We varied the number of training samples from 100 to the full 200 cases (each case
corresponds to an interval of 50 frames) and observed the trend of the AUROC. As can be
seen in Fig.5(b), the GP models consistently outperformed the HMM with different training
sample sizes. Importantly, although the performances of both models decreased, our GP
models dropped more graceful, resulting in bigger difference given smaller training sample
size. As only 48 free parameters are required for 16 GP models (3 each) used in our approach,
compared with 623 parameters needed by the HMM, this result is expected because less
parameters means less prone to over®tting given sparse data. It is also found that when the
number of cases was less than 140, an HMM with full covariance matrix failed to learn from
the data and its covariance matrix had to be switched to diagonal, which essentially assumed
that different regional activities were independent. Again, this demonstrates the in¯exibility
of using a parametric model for activity modelling due to the dif®culties in determining
optimal model complexity given insuf®cient data.

(a) Sensitivity to noise (b) Sensitivity to small training sample size

Figure 5: Comparison of the GP models with the HMM in terms of (a) sensitivity to noise
and (b) sensitivity to training sample size.
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4 Conclusion
We have presented a novel approach for activity modelling and anomaly detection using
Gaussian Process (GP) models. In particular, GP regression models are developed to learn
the relationship among multi-object activity patterns observed from semantic regions in com-
plex scenes. In addition, a novel one-step ahead prediction strategy was formulated to detect
subtle anomalies, with uncertainty being modelled explicitly for a more reliable detection.
From our extensive experiments, we demonstrated that the proposed approach outperformed
an optimised Hidden Markov Model on both sensitivity to anomaly and robustness to noise.
More importantly, the proposed approach avoids the dif®cult task of adjusting model com-
plexity especially when the training data is scarce.

References

[1] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in
the statistical analysis of probabilistic functions of Markov chains.Ann. Math. Statist.,
41(1):164±171, 1970.

[2] C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering
with the integrated completed likelihood.TPAMI, 22(7):719±725, 2000.

[3] O. Boiman and M. Irani. Detecting irregularities in images and in video.IJCV, 74(1):
17±31, 2007.

[4] M. Brand and V. Kettnaker. Discovery and segmentation of activities in video.TPAMI,
22(8):844±851, August 2000.

[5] Y. Du, F. Chen, W. Xu, and Y. Li. Recognizing interaction activities using dynamic
bayesian network.ICPR, pages 618±621, December 2006.

[6] T. Duong, H. Bui, D. Phung, and S. Venkatesh. Activity recognition and abnormality
detection with the switching hidden semi-Markov model. InCVPR, pages 838±845,
2005.

[7] Agathe Girard, Carl Edward Rasmussen, Joaquin Qui nonero Candela, and Roderick
Murray-Smith. Gaussian process priors with uncertain inputs - application to multiple-
step ahead time series forecasting. InNIPS, pages 529±536, 2003.

[8] S. Gong and T. Xiang. Recognition of group activities using dynamic probabilistic
networks. InICCV, pages 742±749, 2003.

[9] Nocedal J and S. J. Wright.Numerical Optimization. Springer, 1999.

[10] J. Li, S. Gong, and T. Xiang. Scene segmentation for behaviour correlation. InECCV,
pages 383±395, 2008.

[11] C. C. Loy, T. Xiang, and S. Gong. Multi-camera activity correlation analysis. InCVPR,
pages 1988±1995, 2009.

[12] B. D. Lucas and T. Kanade. An iterative image registration technique with an appli-
cation to stereo vision. InProc. of Imaging Understanding Workshop, pages 121±130,
1981.



LOY et al.: MODELLING MULTI-OBJECT ACTIVITY BY GAUSSIAN PROCESSES 11

[13] M. R. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Statistics.
Springer, 1996.

[14] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition.Proc. of the IEEE, 77(2):257±286, February 1989.

[15] C. E. Rasmussen and C. K. I. Williams.Gaussian Process for Machine Learning. MIT
Press, 2006.

[16] Carl Edward Rasmussen and Zoubin Ghahramani. In®nite mixtures of gaussian process
experts. InNIPS, pages 881±888, 2002.

[17] E. Snelson.Flexible and ef®cient Gaussian process models for machine learning. PhD
thesis, Gatsby Computational Neuroscience Unit, University College London, 2007.

[18] J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical models for
human motion.TPAMI, 30(2):283±298, 2008.

[19] C. K. I. Williams. Computation with in®nite neural networks.Neural Computation, 10
(5):1203±1216, 1998.

[20] C. K. I. Williams and D. Barber. Bayesian classi®cation with Gaussian processes.
TPAMI, 20(12):1342±1351, 1998.

[21] C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. InNIPS,
pages 514±520, 1996.

[22] T. Xiang and S. Gong. Optimising dynamic graphical models for video content analy-
sis. CVIU, 112(3):310±323, 2008.

[23] T. Xiang and S. Gong. Video behaviour pro®ling for anomaly detection.TPAMI, 30
(5):893±908, 2008.

[24] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. InNIPS, 2004.

[25] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan. Semi-supervised adapted
HMMs for unusual event detection. InCVPR, pages 611±618, June 2005.

[26] H. Zhou, L. Wang, and D. Suter. Human motion recognition using Gaussian processes
classi®cation. InICPR, pages 1±4, 2008.


