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Abstract. Color serves as an important cue for many computer vision
tasks. Nevertheless, obtaining accurate color description from images
is non-trivial due to varying illumination conditions, view angles, and
surface reflectance. This is especially true for the challenging problem
of pedestrian description in public spaces. We made two contributions
in this study: (1) We contribute a large-scale pedestrian color naming
dataset with 14,213 hand-labeled images. (2) We address the problem
of assigning consistent color name to regions of single object’s surface.
We propose an end-to-end, pixel-to-pixel convolutional neural network
(CNN) for pedestrian color naming. We demonstrate that our Pedestrian
Color Naming CNN (PCN-CNN) is superior over existing approaches
in providing consistent color names on real-world pedestrian images. In
addition, we show the effectiveness of color descriptor extracted from
PCN-CNN in complementing existing descriptors for the task of per-
son re-identification. Moreover, we discuss a novel application to retrieve
outfit matching and fashion (which could be difficult to be described by
keywords) with just a user-provided color sketch.

1 Introduction

Color naming aims at mapping image pixels’ RGB values to a pre-defined set of
basic color terms1, e.g., 11 basic color terms defined by Berlin and Kay [5] - black,
blue, brown, grey, green, orange, pink, purple, red, white, and yellow. Color
names have been widely used as a type of color descriptor for a variety of appli-
cations such as image retrieval and image classification [38]. Recent studies [18,
25, 41] have applied color naming for the task of person re-identification [11, 13,
17, 21, 22, 43, 45] to achieve robust person matching under varying illuminations.
Automatic color naming has also been exploited for cloth retrieval and fashion
parsing [24].

In this study, we focus on the task of assigning consistent color names to
pedestrian images captured from public spaces (see Figure 1). This task is non-
trivial since the observed color of different parts of a pedestrian’s body surface
can look totally different under disparate illuminant conditions and view angles.
In addition, strong highlights and shadows can make the RGB values of the same

1 A basic color term is defined as being not subsumable to other basic color terms and
extensively used in different languages.
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(a) Pedestrian color naming

(b) Color sketch-based fashion retrieval

Fig. 1: (a) State-of-the-art non-learning based color naming method, DCLP [26]
and learning-based approaches based on hand-crafted features, including
SVM [24] and PLSA [38] fail to extract accurate color names for different re-
gions. In contrast, the proposed Pedestrian Color Naming Convolutional Neural
Network (PCN-CNN) generates color labels consistent with the ground truth
(PCN-CNN generates color labels over its own predicted foreground region while
other methods use ground-truth foreground mask). (b) A meaningful application
of our method is the retrieval of outfit matching based on a simple user-provided
color sketch (from left to right: sketch, retrieved image, and the corresponding
estimated color names map). The application is demonstrated in Section 5.3.

surface span from light to dark. Creases and folds in clothing surface can also
lead to drastically different predictions of color. Some examples are shown in
Figure 1. Existing methods are not effective for this kind of challenging scenar-
ios. Specifically, some of these approaches are non-learning-based methods [26],
they thus cannot effectively capture the uncontrollable variations for specific sce-
narios. Some other methods rely on hand-crafted features and color histograms,
e.g., LAB color space [38], SIFT and HOG features [24], which may have limited
expressive power to represent the image content (more details in Section 2).

We believe that the key to address the aforementioned problem is a model
that is capable of extracting meaningful representation to achieve color con-
stancy [2, 6, 10], i.e. the capability of inferring the true color distribution intrin-
sic to the surface. Such a representation needs to be learned from a large-scale
training set to ensure robustness for real-world scenes. To this end, we make two
main contributions:

– A large-scale dataset - Existing color naming datasets either lack of suffi-
cient training samples or do not come with pixel-level annotation (see Sec-
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tion 3). To facilitate the learning and evaluation of pedestrian color nam-
ing, we introduce a large-scale dataset with careful manual segmentation
and region-wise color annotation. The dataset contains 14,213 images in
total, which is the largest color naming dataset that we aware to our knowl-
edge. All the images are collected under challenging surveillance scenarios
(Market-1501 dataset [44]), with large variations in illumination, highlights,
shadow changes, different pedestrian poses and view angles. We show that
the dataset is essential for pre-training a color naming deep network for a
number of pedestrian-related applications, including person re-identification
and cloth retrieval.

– End-to-end color naming - We propose a Pedestrian Color Naming Convo-
lutional Neural Network (PCN-CNN) to learn pixel-level color naming. In
contrast to existing studies [24, 38] that require independent components for
feature extraction and color mapping, our CNN-based model is capable of
extracting strong features and regressing for color label for each pixel in an
end-to-end framework. Conditional random field (CRF) is further adopted to
smooth the pixel-wise color predictions. Our network is specially designed to
handle images with low resolution, and hence it is well-suited for processing
pedestrian images captured from low-resolution surveillance cameras.

Extensive results on the Market-1501 [44] and Colorful-Fashion [24] datasets
show the superiority of our approach over existing color naming methods [4,
24, 26, 38]. We further show the applicability of PCN-CNN in complementing
existing visual descriptors for the task of person re-identification (Re-ID). In
particular, we demonstrate consistent improvement using the PCN-CNN fea-
tures in conjunction with different existing Re-ID approaches. In addition, we
also highlight an interesting application for outfit matching retrieval. In partic-
ular, in the absence of imagery or keyword query, we show that it is possible to
retrieve desired fashion images from a gallery through just a simple and conve-
nient ‘color sketch’. An example is depicted in Figure 1(b). Such a color-driven
query provides rich region-wise color description and can be used in conjunction
with visual attribute-driven query [21, 28] for ‘zero-shot’ retrieval.

2 Related Work

Color naming. Benavente et al. [4] proposed a pixel-wise color naming model
based on lightness and chromaticity distribution, which did not consider cross-
pixel relations and intrinsic consistency. Serra et al. [35] and Liu et al. [26] im-
prove the region consistency of color names based on this pixel-wise color naming
results. In particular, Serra et al. [35] applied CRF to infer the color intrinsic
components from images. They extracted the intrinsic information according to
the segmentation results of Ridge Analysis of color Distribution (RAD) [39],
and assigned the same color label to pixels connected by a ridge. However, the
RAD method only described the RGB histogram distribution and may fail to
handle the complicated color distribution. Besides, only with ridge information,
the method cannot reliably predict the correct color label from a region if a big
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portion of the surface’s pixels are affected by shadows or highlights. Liu et al.
[26] applied the similar CRF model and built a label propagation model where
the color labels of pixels in normal region will be propagated to those shadowed
and highlighted regions in the same objects’ surface. However, their model re-
lied on the detection results of highlights and shadows [16, 20, 31, 37, 39] with
mainly the intensive and reflectance information, which do not suit for compli-
cated color distribution cases, especially for the challenging pedestrians under
real-world settings.

Van de Weijer et al. [38] used LAB histogram features as ‘words’ and applied
them into a Probabilistic Latent Semantic Analysis (PLSA) model to learn for
‘topic’ color naming. Liu et al. [24] designed a concatenated feature by RGB,
LAB color spaces and SIFT, HOG features. Mojsilovic [32] built a multi-level
color description model and estimated color naming combined with segmenta-
tion. However, this work did not address the issues of shadowed and highlighted
regions. All of these hand-crafted features lack robustness to dramatic illumina-
tion changes.

Pedestrian descriptors. Person re-identification [13] aims at recognizing the
same individual under different camera views. To tackle the challenging appear-
ance changes by varying viewpoints, illumination and poses, many researchers
have proposed different pedestrian descriptors. Gray et al. [15] introduced an
ensemble of localized features (ELF) consisting of colors and textures for view-
point robustness. Layne et al. [21] proposed to use mid-level semantic attributes,
fused with low-level features in ELF to obtain improved results. Bazzani et al. [3]
exploited three complementary aspects of the human appearance: the overall
chromatic content, the spatial arrangement of colors into stable regions, and the
presence of recurrent local motifs with high entropy. More recently, a ‘mirror
representation’ [9] is proposed to explicitly model the relation between different
view-specific transformations. Chen et al. [7] proposed a Spatially Constrained
Similarity function on polynomial feature map and achieved a new state of the
art results. Recent studies have explored the illuminant-invariant color distribu-
tion descriptors for Re-ID. Kviatkovsky et al. [19] introduced log-chromaticity
color space to identify persons under varying scenes. To complement the tradi-
tional color information, color naming has been applied to recent studies [18, 41,
25] and achieved improvements over the state-of-the-art models. Kuo et al. [18]
employed the semantic color names learned by [38]. Yang et al. [41] employed
the salient color names according to RGB values. However, these applied color
naming models did not show region consistency and had limited robustness to
dramatic illumination changes.

3 Pedestrian Color Naming Dataset

A well-segmented region-level color naming dataset is essential for both model
training and evaluation. A dataset collected from realistic scenes, with diverse
illumination, highlights and shadows, and varying view angles, counts heavily to
the success of pedestrian color naming.
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Table 1: The train/test distribution of 11 basic colors at region level (arranged
in alphabetical order) of the Pedestrian Color Naming (PCN) dataset.

black blue brown grey green orange pink purple red white yellow

train 8040 2192 722 3256 1576 318 1138 669 1972 5013 1651
test 1264 275 113 491 234 37 139 109 249 710 202

There is no public large-scale color naming dataset with pixel-level labels.
The Google Color Name [38] and Google-512 datasets [34] contain 1100 and
5632 images, respectively, but both of them are weakly labeled with only image-
level color annotations. The Object dataset [26] and Ebay dataset [38] include
350 and 528 images with region-level color annotation. These datasets are far
from enough for learning and testing a CNN-based color naming model.

To facilitate the learning of evaluation of pedestrian color naming, we build a
new large-scale dataset, named Pedestrian Color Naming (PCN) dataset, which
contains 14,213 images, each of which hand-labeled with color label for each pixel.
The dataset and the annotations can be downloaded at http://mmlab.ie.cuhk.edu
.hk/projects/PCN.html.

Image collection. All images in the PCN dataset are obtained from the Market-
1501 dataset [44]. The original Market-1501 dataset consists of pedestrian images
of 1,501 identities, captured from a total of six surveillance cameras. Each iden-
tity has multiple images with varying scene settings and poses under multiple
camera views. These images contain strong highlights and shadows with various
illumination conditions and view angles. We carefully select a subset of 14,213
images which have good visibility of the full body and diverse color distribution.
We consequently divide the dataset into a training set of 10,913 images, a vali-
dation set of 1,500 images and the remaining 1,800 images for testing. Table 1
summarizes the distribution of the different color labels in both the training and
test subsets. Note that there may be multiple colors co-exist in the same image.
Some colors, namely purple and orange, are relatively lower in numbers since
pedestrians tend to wear clothes with more common colors such as black and
white.

Super-pixel-driven annotation. Pixel-by-pixel labeling of color labels is a te-
dious task. We attempted this possibility but found it not scalable. To overcome
this problem, we first oversegment each image into 100 super-pixels through the
popular SLIC superpixel segmentation method [1]. We found that the super-
pixels align well with the object contours most of the time. We then carefully
identify the color label for each super-pixel following the 11 color names defined
by Berlin and Kay [5], excluding the background, human skin, and hair areas.
Note that some super-pixels are originated from the same region (e.g. different
regions of a pair of jeans). We manually group these super-pixels together to
form a single region. Eventually, each coherent region shares the same color la-
bel, and the labels for all regions collectively form a label map with the same
resolution as of the associated image. Figure 2 depicts some example images and
their corresponding pixel-level color label maps.
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Fig. 2: Some examples of labeled images in the Pedestrian Color Naming dataset.
The images in the first row are the original images and those in the second row
are the color label maps where each region is visualized using the corresponding
basic colors (black, blue, brown, grey, green, orange, pink, purple, red, white,
and yellow). The background region is shown in dark cyan.

4 Pedestrian Color Naming Convolutional Network

Problem formulation. Given a pedestrian image I, our goal is to assign each
pixel of I with a specific color name. Specifically, we define a binary latent
variable yic ∈ {0, 1}, indicating whether an i-th pixel should be named with a
color name c, where ∀c ∈ C = {1, 2, . . . , 11}, representing the 11 basic color
names [5].

We approach this problem in a general CRF [12] framework with the unary
potentials generated by a deep convolutional network. The energy function of
CRF is written as

E(y) =
∑
∀i∈V

U(yic) +
∑
∀i,j∈E

π(yic, y
j
d), (1)

where y, V, and E , represent a set of latent variables, nodes, and edges in an
undirected graph. Here, each node represents a pixel in image I and each edge
captures the relation between pixels. The U(yic) measures the unary cost of
assigning a label c to the i-th pixel, and π(yic, y

j
d) is the pairwise term that

quantifies the penalty of assigning labels c, d to pixels i, j respectively. We
define the unary term in Eq. (1) as

U(yic) = − ln p(yic = 1|I), (2)
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where p(yic = 1|I) represents the probability of assigning label c to i-th pixel. In
this study, we model the probability using PCN-CNN, which will be described
next.

For the pairwise term, we let π(yic, y
j
d) = µ(u, v)D(i, j), where µ(u, v) repre-

sents a prior color co-occurrence. Although this prior can be learned from data,
to simplify the problem we make a mild assumption that µ(u, v) = 1 for any
arbitrary pair of color labels. The D(i, j) measures the distances between pixels,

D(i, j) = w1||f(Ii)− f(Ij)||2 + w2||(xi, yi), (xi, yj)||2, (3)

where f is a function that extracts features from the i-th pixel, e.g., RGB values,
while (x, y) denote the coordinates of a pixel, and w1, w2 are constant weights.
The pairwise term encourages pixels that are close and similar to each other to
share the same color label.

Network architecture. Deep convolutional network has shown immense suc-
cess for various image recognition tasks. Different from existing problems, we
need to cope with a few unique challenges. Firstly, we need to deal with the
background clutter, which is detrimental to the foreground color prediction.
Secondly, our problem requires special care in designing the architecture since
pedestrian images are typically low in resolution, e.g. 128 × 64 in the Market-
1501 dataset [44]. This challenge is especially crippling since most off-the-shelf
deep networks contain pooling layers that could significantly reduce the effective
size of the input images. We cannot afford this information loss.

Consequently, we based our solution on the V GG16 network [36] but with
the following modifications. To handle the background clutter, we additionally
consider background as a label and train the network to jointly estimate for both
foreground-background segmentation and color naming, resulting in 12-category
output. That is, the network output has 11 color names and a background indi-
cator b ∈ {0, 1} to indicate the presence of background at a pixel.

To handle the small input resolution issue, we need to modify the V GG16

network. We still initialize the filters in our network with all the learned pa-
rameters to make full use of V GG16 pre-trained by ImageNet. Nevertheless, for
the pixel-to-pixel prediction of low-resolution input, more information should
be preserved. Table 2 compares the hyper-parameters of the V GG16 network
and our network. We use ai and bi to denote the i-th group in Table 2(a) and
2(b). Our network contains 13 convolutional layers, two max-pooling layers, and
the last three layers act as the fully convolutional layers and de-convolutional
layers, which generates the final labeling results. As summarized in Table 2, we
increase the resolution of convolved data by removing three max-pooling lay-
ers from V GG16. As a result, the smallest size of feature map in our model
is 32×16 (based on input-size of 128×64), keeping more information compared
with V GG16.

Filters of b6 are initialized with the filers of a7, where each filter in a7 should
be convolved with a5 on a stride (the stride length is 2). Since the max-pooling
layer a6 has been removed, the 3×3 receptive filed is padded into 5×5 with zeros
every other parameter in the filter, to keep the resolution identical to one-stride
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Table 2: The comparisons between V GG16 and our PCN-CNN, as shown in (a)
and (b) respectively. The ‘fs’, ‘#cha’, ‘act’ and ‘size’ represent the filter stride
size, number of output feature maps, activation function, and size of output
feature maps, respectively. And ‘conv’, ‘max’, ‘dconv’, and ‘fc’ represent the
convolution layer, max-pooling layer, deconvolution layer, and fully-connected
layer, respectively. The ‘relu’, ‘idn’ and ‘soft’ represent the rectified linear unit,
identity and softmax activation functions.

(a) V GG16: 224×224×3 input image; 1×1000 output labels.

1 2 3 4 5 6 7 8 9 10 11 12

layer 2×conv max 2×conv max 3×conv max 3×conv max 3×conv max 2×fc fc
fs 3-1 2-2 3-1 2-2 3-1 2-2 3-1 2-2 3-1 2-2 - -

#cha 64 64 128 128 256 256 512 512 512 512 1 1
act relu idn relu idn relu idn relu idn relu idn relu soft
size 224 112 112 56 56 28 28 14 14 7 4096 1000

(b) Our PCN-CNN: 128×64×3 input image; 128×64×12 output label maps.

1 2 3 4 5 6 7 8 9 10

layer 2×conv max 2×conv max 3×conv 3×conv 3×conv conv conv dconv
fs 3-1 2-2 3-1 2-2 3-1 5-1 9-1 17-1 1-1 1-1

#cha 64 64 128 128 256 512 512 4096 4096 12
act relu idn relu idn relu relu relu relu relu soft
size 128×64 64×32 64×32 32×16 32×16 32×16 32×16 32×16 32×16 128×64

convolution. The following convolutional layers are padded in the similar way.
For the fully convolutional layer b8, if all the 7×7 parameters are to be applied for
initialization, a padded 49×49 receptive filed is needed in the similar way, which
needs more padding to the input feature map to keep the output size after up-
sampling. Since large zero padding can affect the performance, we down-sample
the parameters of receptive field [8] from 7×7 to 3×3 before applying them for
initialization. In this way, the padded 17×17 with zeros from 3×3 is applied in
b8 as the fully convolutional layer. Finally, the b10 layer up-samples the feature
maps to 128×64 by bilinear interpolation, and generates the 12-dimensional
prediction for each pixel (11 color + background labels).

It is worth pointing out that deep convolutional network has been widely used
for image segmentation [8, 27, 29]. Differs from these prior studies, our work is
the first attempt to use CNN for color naming. In terms of network architecture,
our network shares some similarity to the Deep Parsing Network (DPN) [27].
Unlike DPN that accepts input image of resolution 512 × 512, we design our
network to accommodate for small pedestrian images and remove pooling layers
to avoid information loss. We attempted to enlarge pedestrian images to fit
DPN’s requirement but the performance of this alternative is inferior to that
achieved by our final design.

Training details are given as follows. We start with an initial learning rate of
0.001, and reduce it by a factor of 10 at every 5K iterations. We use a momentum
of 0.9, and mini-batches of 12 images.
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5 Experiments

In this section, we first evaluate PCN-CNN’s performance for color naming. We
also examine the effectiveness of color names descriptor extracted from PCN-
CNN for the task of person re-identification. Furthermore, we show an interesting
application with PCN-CNN, using only simple sketches as probe to retrieve
desired outfit matching of fashion images from a real-world image gallery.

5.1 Pedestrian Color Naming

In this experiment, we analyze PCN-CNN’s performance for pedestrian color
naming.

Datasets. We perform evaluations on the proposed PCN dataset (relabelled
Market 1501 dataset [44]) and a cloth dataset, Colorful-Fashion [24], both of
which have a test subset of 1,800 and 2,682 images, respectively. The PCN
dataset is challenging due to its low image resolution (128 × 64) and large varia-
tions in terms of illumination and pedestrian pose. The Colorful-Fashion dataset
contains images with a higher resolution (600 × 400), but the cloth patterns are
more complex and colorful. Images in the Colorful-Fashion dataset comes with
region-wise color labels. Note that the dataset also annotates hair pixels with
color names, we therefore include the hair region estimation in our evaluation.
For the PCN dataset, we label the color names based on the procedure described
in Section. 3.

Evaluation metrics. To measure the performance of both the pixel-wise and
region-wise accuracies, we apply two metrics for model evaluation:
(1) Pixel Annotation Score (PNS) - this score [38] measures the percentage of
correctly predicted color names at pixel level. We average the PNS for all regions
as the final score to measure the consistency of color naming.
(2) Region Annotation Score (RNS) - each region’s color label is specified by
its dominant color names prediction of pixels. We then calculate the averaged
accuracy of prediction at the region level.

Results. We compare our PCN-CNN against with state-of-the-art methods,
including PLSA [38], PFS [4], SVM-based color classifier [24] and DCLP [26].
Besides, we also adopt CRF to smooth PCN-CNN color names prediction and
evaluate the performance. For a better foreground estimation on pedestrian im-
ages, the PCN-CNN is first pre-trained on the large-scale pedestrian parsing
dataset PPSS [30], which encourages the network to generate binary map com-
posed of pedestrian region and the background. The pre-trained parameters of
PCN-CNN are then fine-tuned on the training partition of the PCN dataset
and Colorful-Fashion dataset, respectively, for the respective tests on the two
datasets. Likewise, all learning based methods, e.g. PLSA and SVM, are re-
trained using the same training partition employed by PCN-CNN to ensure a
fair comparison. It is worth pointing out that during the evaluation of PCN-
CNN, we employ the foreground masks generated by itself before applying the
evaluation metrics. For other baselines (PLSA, PFS, SVM, and DCLP), we use
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Table 3: Performance over PCN and Colorful-Fashion test set. PNS and RNS
denote the averaged pixel annotation score and region annotation score respec-
tively. The smoothed color names prediction is denoted by PCN-CNN+CRF.

Method
PCN Colorful-Fashion

PNS RNS PNS RNS

PLSA [38] 63.1 68.4 57.4 71.4
PFS [4] 61.1 68.5 48.6 60.5

SVM [24] 62.8 62.2 43.5 45.4
DCLP [26] 56.8 62.0 47.8 54.8
PCN-CNN 74.1 80.3 70.2 81.8

PCN-CNN+CRF 74.3 80.8 71.1 81.9

the ground-truth masks for this purpose. Given the more accurate masks com-
pared to PCN-CNN generated ones, these baselines therefore gain additional
advantages than PCN-CNN.

Table 3 and Figure 3 show the performance comparison and confusion matrix
(based on RNS), respectively, among different methods. Qualitative results are
provided in Figure 4. As shown in the experimental results, our model achieves
superior performance in both PNS and RNS metrics, with outstanding robust-
ness to shadows and highlights, creases and folds. Adding CRF to PCN-CNN
further boosts its performance.

5.2 Color Naming for Person Re-identification

Pedestrian color naming provides a powerful feature for person re-identification,
even in low-resolution images, due to its robustness to varying illumination and
view angles. A robust color naming model with good consistency helps to de-
scribe people more accurately by ignoring the minor change in RGB values. In
this section, we combine the region-level color names generated by PCN-CNN
with several existing visual descriptors for the task of person re-identification,
and test the performance on the widely used VIPeR dataset [14].

Feature representation. Similar to [23], we first partition a pedestrian image
into six equal-size horizontal stripes, represented as H = [h1, ..., h6]T. For the i-th
part hi, we use a histogram of color names as the feature representation, resulting
into a 66-dimensional descriptor for all the parts. The c-th bin of a histogram hi
denotes the probability of all pixels in the corresponding part being assigned to
color name c. To minimize the influence of background clutter, we only extract
the color distribution of the foreground region. The estimated feature is called
pedestrian color naming (PCN) descriptor in the following session. We concate-
nate the PCN descriptor with several representative visual descriptors for person
re-identification. These include one of the most widely used features called en-
semble of localized features (ELF) [15, 21]; a pure color-based features, named
salient color names based color descriptor (SCNCD) [41]; a recent advanced fea-
tures known as mirror representation [9]. The original ELF, SCNCD and ‘mirror
representation’ descriptors and those concatenated with PCN descriptor are fed
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(b) PLSA [38]
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Fig. 3: Confusion matrix of color naming (regional level) on the Pedestrian Color
Naming dataset.

into the KMFA metric learning method [40] for matching. Moreover, the PCN
feature is also fed into a recent outperforming similarity learning method with
spatial constraints (SCSP) [7], fused with other originally used visual cues.

Experiment settings. The VIPeR dataset contain 632 pedestrian image pairs,
with varying illumination conditions and view angles. Each pedestrian has two
images per camera view. All the images are normalized to 128×48 pixels. We
randomly choose half of the image pairs for training and the others for testing.
This procedure is repeated for 10 evaluation trials. Averaged performance is
measured over the trials by using the typical cumulative matching characteristic
(CMC) curve. In particular, we report the rank k matching rate, which refers to
the percentage of probe images that are correctly matched with the true positives
in the gallery set in the top k rank.

Results. As can be observed from Table 4, the PCN descriptor is capable of
improving the performance of a wide range of existing Re-ID visual descriptors,
from ensemble of color/texture features (ELF), pure color based features (SC-
NCD), as well as the more elaborated mirror representation. Moreover, a new
state-of-the-art accuracy can be achieved by SCSP learning method, when con-
catenating with the PCN descriptor. It is interesting to see that PCN descriptors
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Image� Ground-truth� 		PFS� 		SVM� PCN-CNN�PLSA� 		DCLP�

(a) Results on the Pedestrian Color Name (PCN) dataset

Image� Ground-truth� PLSA� 		PFS� 		SVM� 		DCLP� PCN-CNN�

(b) Results on Colorful-fashion dataset

Fig. 4: Qualitative results on the PCN and Colorful-Fashion datasets. The back-
ground is indicated by dark cyan. PCN-CNN generates color labels over its
own learned foreground region while other methods use ground-truth foreground
mask.
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Table 4: Comparative results between original person re-identification descrip-
tors vs. descriptors enhanced with PCN descriptor. Results are reported on the
VIPeR dataset.

Rank k 1 5 10 20

ELF [15] 23.77 51.17 64.62 78.89
ELF [15]+PCN 36.36 68.92 82.69 92.63

SCNCD [41] 21.33 38.86 49.02 59.91
SCNCD [41] +PCN 28.45 52.09 64.11 75.03

Mirror-KMFA [9] 42.97 75.82 87.28 94.84
Mirror-KMFA [9]+PCN 45.03 77.56 89.05 96.04

SCSP [7] 53.54 82.59 91.49 96.65
SCSP [7]+PCN 54.24 82.78 91.36 99.08

yields large improvement to the SCNCD method, which is also based on color
names. The results suggest the robustness of our approach in complementing
existing pedestrian descriptors.

5.3 Color Naming for Zero-Shot Cloth Retrieval

One may relatively often has to do with combining different colors of shirts,
pants, and shoes together. Or one might want to purchase a particular piece of
garment in mind but do not know how to describe its combination of colors and
patterns. Instead of elucidating a long textual description of it, one could just
draw a sketch! A recent paper [42] has applied this idea for fine-grained shoe
retrieval using monochrome sketches. In this section, we show the possibility to
‘retrieve with colors’.

Specifically, one simply needs to paint with a few strokes the desired color on
a sketch with specific combinations and patterns. The sketch can then serve as
a query for cloth/fashion retrieval. This is possible through the following steps:
we process a color sketch using PCN-CNN to transform it into a map with 11
color names, and further convert it into a PCN histogram (see Section 5.2). We
assume all the gallery images have been processed in the same way. We then
apply histogram intersection to measure the similarity of features for retrieval.

Experiment settings. A total of 80 images with rich color and complex pat-
terns are selected from the Colorful-Fashion dataset[24], and we ask volunteers
to draw for the corresponding color sketches. The task is to use the sketch as
query and correctly retrieve the true image among the 2,682 test images of
Colorful-Fashion dataset. The top-k retrieval accuracy is adopted as the metric.

Results. Table 5 shows the cloth retrieval results with different color naming
models. Thanks to the robustness of PCN-CNN, our method achieves an impres-
sive top-1 retrieval rate of 42.86%, surpassing other baselines. Some qualitative
results are shown in Figure 5, in which we compare the retrieved results and
generated color map of our PCN-CNN and PLSA. With poorer region-level con-
sistency compared to PCN-CNN, which is critical for the cloth retrieval task,
PLSA can easily fail to retrieve the ground-truth matching clothes with strong
highlights and shadows.
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Table 5: Top-k retrieval accuracy on Colorful-Fashion dataset (a subset is se-
lected, see text for details) using color sketch as query.

Rank k 1 5 10 20

PLSA [38] 6.49 12.99 16.99 23.38
PFS [4] 6.48 12.98 18.18 20.78

PCN-CNN 42.86 68.83 72.73 83.12

Probe� Top-5	Retrieval	Results� Color	Label	of		
Ground-truth�

PCN-CNN
�

PLSA
�

Fig. 5: We show the top-5 retrieval results with sketches as probes, using PCN-
CNN and PLSA, respectively. The retrieved images highlighted with red bound-
ary represent the ground-truth matching cloth images.

6 Conclusion

We have presented an end-to-end, pixel-to-pixel convolutional neural network
for pedestrian color naming, named PCN-CNN. To facilitate model training and
evaluation, we have introduced a large-scale pedestrian color naming dataset,
containing 14,213 images with carefully labeled pixel-level color names. Extensive
experiments show that the PCN-CNN is capable of generating consistent color
name to clothing surfaces regardless of large variations in clothing material and
illumination. The PCN descriptor extracted from the model is not only useful for
complementing existing pedestrian descriptors, but also generalizable for sketch-
to-image retrieval.
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