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1. Introduction 

 
The Hong Kong government initiated a Universal Community Testing Program (UCTP). 
Each citizen can voluntarily take a free Covid-19 test within the period from 
September 1 to 11. Is it possible to predict the number of people turning out to be 
positive? In particular, can we use simple models for such prediction, with the logic 
and assumptions clearly spelt out, so that the method can be generally applied? 

 

The time between infection (of Covid-19) to the time the infected person shows 
symptoms is called the incubation period. The initial part of the incubation period 
when the infected person is not infectious is called the latent period. For Covid-19, 
the latent period is usually shorter than the incubation period, meaning an infected 
but asymptomatic person can infect others during the second part of the incubation 
period. This, the existence of numerous asymptomatic transmitters is the main 
reason it is so hard to control Covid-19, as nicely explained in a recent article [1]. 
 
In order to control Covid-19, we must isolate the infected from the non-infected. If 
we know who the infected are, this is relatively easy: the infected can be sent to 
hospital or quarantined. But due to the possibility of asymptomatic cases, you don’t 
always know who are infected. Without this knowledge, many governments resorted 
to draconian measures of physically isolating all people from each other or other 
strong social distancing policies, which incurred huge economic and social costs. See 
[2] for a discussion. 
 
Before long, relatively inexpensive and fast testing capability was developed to 
determine whether a given person is infected or not. Furthermore, group testing 
techniques can be used to further reduce the per person cost of testing. Since finding 
out the infected persons benefits the whole community, the government is often 
willing to foot the bill or heavily subsidize it. How much testing to do, or how much 
money a community should spend on testing is really a value judgement, and is 
beyond the scope of our discussion. However, evaluating the result of a testing 
program, for example in terms of how many infected cases are found, is a useful 
exercise, since it may help us compare different testing and isolation strategies. 
 
2. Assumptions and methods 

 
Towards developing a simple model, we begin by making some assumptions. 
 

Assumption 1: Each Covid-19 infected person behaves the same, in terms of 
incubation and latent period, and ability to transmit to others during the 
incubation period. 



This assumption let us avoid having to model each infected person separately, 
significantly reducing the complexity of our analysis. In reality, each person is 
different, and there are so-called super-spreaders who may be infectious for a longer 
period of time and more socially active. This assumption essentially treats each 
person as an average person in every respect. 
 

Assumption 2: For each infected person, the incubation period is m days, and 
the latent period is zero, so each infected person is equally infectious for each 
day of the incubation period. 
. 

This assumption let us treat all the undiscovered asymptomatic infected persons as a 
group without having to keep track of their days since infection. The reported 
average incubation period is around 7 days [1] and the most infectious period is the 
last 2 days of the incubation period. This assumption treats each person in the 
asymptomatic group as infectious; this over-estimate can be partly compensated by 
suitably lowering the ability each person infects others. 
 

Assumption 3: When reaching the end of the incubation period, an infected 
person always sees a doctor or goes to the hospital, to get tested. 

 
In reality, an infected person with mild symptoms may stay at large for a variety of 
reasons, and continue to infect others. This situation is similar to having an extra-long 
incubation period. So to compensate for such cases, we may need to consider setting 
the average incubation period m to be slightly longer than the reported average.  
 
Based on the above assumptions, we can assume the size of the (asymptomatic) 
infected group of people to be n(t) on day t. Knowing the value of n(t) on the days of 
Universal Community Testing Program is statistically equivalent to knowing the 
number of people testing positive in UCTP, if we assume the tested population is a 
random1 sample of the whole population. Before trying to estimate the value of n(t) 
for a specific day t, let us first look at the factors that affect n(t) from day to day. 
 
In general, the dynamic behavior of n(t) from day to day can be described by an 
equation, such as: 
  n(t) = fn(n(t-1)) 
The function would include various other parameters than n(t), reflecting social 
distancing policies, import traveler control policies and other factors reflecting the 
nature of outbreak. And we know the function must be an increasing function in n(t).  
For our purposes, preferring a simpler model, we assume a linear model: 
  n(t) = (h(t)-k(t)) n(t-1) + g(t) 
where h(t) models the growth of n(t) by the newly infected persons, and k(t) models 
how n(t) is reduced by discovering existing infected persons via testing. The factor 
g(t) is simply the number of imported cases undiscovered by border control. 
Generally speaking, these quantities are all functions of time, reflecting changing 

                                                      
1 It can be argued that the sampling produced by voluntary participation is not random; those more 
likely to be infected have a higher incentive to participate. Also, some citizens boycotted the UCTP due 
to political reasons. So the tested population is not quite random. 



environmental factors and adapting government policies. But over a short period of 
time, the values of h(t), k(t) and g(t) can remain stable. If they are constants, then: 
  n(t) = a n(t-1) + b = at n(0) + b(1-at)/(1-a)  
What can we say about n(t) for such a static model? Basically, the value of n(t) will 
blow up if a≥1. But if a<1, and b is small, n(t) would hoover or grow slowly in a 

manageable range. In the real world, governments would not allow n(t) to blow up, 
hence would adapt social distancing and border control policies to keep a<1 and b 
very small if not zero, to keep n(t) stable and stay at a minimal level. Hong Kong 
government calls the policy adaptation (张弛有度). It should be appreciated that this 

job of policy adaptation is very delicate and difficult, as the effectiveness of policies 
are unknown, and a small miscalculation can lead to n(t) growing exponentially. With 
all things considered, the situation in Hong Kong is well controlled.  
 
Since in general the factors h(t), k(t) are changing, let us consider how to model 
them. For h(t), we can initially focus on two factors: (1) current social distancing 
index, S(t), and (2) current average cluster size R(t). So  

h(t)=S(t)R(t) 
The social distancing index is some measure between 0 and S*. When the 
government implements complete lock down or curfew, we can assume S(t) to be 
almost 0; when there is no social distancing, on the other hand, we can assume the 
index to be close to S*, which is the average number of persons an asymptomatic 
carrier will infect in one day. The value of S* would be different in different cities 
depending on the natural level of social interactions when there is no Covid-19. 
During a period of time with the same social distancing policy, we would assume the 
value of S(t) to be roughly a contant. 
 
Once a person is infected, we can assume that a number of people living together 
with the infected person will also be infected; this is referred to as the cluster size. 
Note, we assume infection within the cluster is unaffected by social distancing. If the 
infected person has a normal family, the cluster size R(t) may be 2, for a couple, or 3, 
4 or more if the immediate family includes parents and children. Based on this 
definition R(t) can be assumed to be relatively a constant. 
 
The daily reduction multiplier, k(t), is determined by two important factors as well: 
(3) U(t), the discovery rate from testing, and (4) V(t), the incubation ending rate: 
  k(t) = U(t) + V(t) 
That means, we assume U(t)n(t) asymptomatic carriers are discovered by various 
testing programs implemented at t, i.e. contact tracing, testing of high risk groups, or 
universal testing programs such as UCTP. If the testing effort stays the same, then 
U(t) stays relatively constant. The value of V(t) depends on the (infection) age 
distribution of the carriers, given by n1(t), n2(t), …, nm(t) where the subscript is the 
age since infection. These values sum to n(t), and V(t) = nm(t)/n(t). Depending on the 
social distancing policies and various other factors, the age distribution may vary 
over time, hence V(t) is usually not a constant. These two factors, U(t) and V(t) do 
not overlap with each other, and are additive. 
 
Finally, we make one more assumption, that makes g(t)=0: 



 
Assumption 4: All imported cases are detected and quarantined. All local 
infections are due to asymptomatic carriers undetected locally. 

 
This assumption is, unfortunately, not always true. For a period of about one month 
when there were no reported cases in Hong Kong; but all of a sudden in early July, 
new cases started to build up. The new out-break is almost surely due to imported 
cases. Although Hong Kong has tight border control for regular travelers, there are 
many exceptions for people working in supply chains and special business and 
government officials, so the system was not air-tight. Since the new outbreak, the 
government has tightened policies for the exceptional situations, so it is reasonable 
to make this assumption now, at the time of UCTP. 
 
3. Data and analysis 

 
The Hong Kong government gives an update on the new cases of Covid-19 each day, 
giving details such as whether the case is asymptomatic or not, whether it is linked to 
existing known cases or not (helpful for contact tracing), and various other 
information about the new cases to help social distancing [3].  
 

t #local #symp #asymp #unlinked Date Est n(t) Est S(t) 

1 16 14 2 8 25/8/20 98 0.42 

2 24 14 10 11 26/8/20 98 0.45 

3 18 13 5 4 27/8/20 91 0.43 

4 10 9 1 3 28/8/20 63 0.42 

5 16 12 4 5 29/8/20 84 0.43 

6 10 8 2 5 30/8/20 56 0.43 

7 7 6 1 2 31/8/20 42 0.42 

 
The above table lists some relevant statistics in the daily update for the week before 
the start of the UCTP. We have not listed the number of imported cases, which we 
assume all get quarantined and do not contribute to the hidden carrier group. 
Column 2 is the total number local cases, out of which some are symptomatic and 
some are asymptomatic as shown in the 3rd and 4th columns. The 5th column shows 
the number of cases not linked to earlier cases (source of infection is unknown). 
 
From the table, and our simple model, we first observe that both the total number of 
local cases, and the number of cases with symptom (let us denote that by W(t)), 
follow a slowly declining trend. Based on this pattern, we make a conjecture - the age 
distribution of the asymptomatic carrier group is relatively flat. If the trend for local 
cases is not declining, but flat, then the age distribution is most likely declining, since 
some of the cases are discovered before they reach the end of incubation period. But 
the declining trend of local cases should compensate towards making the age 
distribution flat. Given this conjecture, we can estimate n(t) as 
  n*(t) ~ m W(t) 
where m=7 is the average length of incubation period. We list this estimated n*(t) in 
column 7.  



 
Another observation is that due to the rather smooth declining trend, we can fit an 
average declining rate of 
  a = 0.89 
In our model 
  a = (RS – U – V) 
The values of R and V have been assumed to be roughly constant during the short-
term: 

V = 1/m = 1/7 
R = 2.5 

which means on average 2.5 immediate family members are assumed to be infected 
together. The value of U(t) is given in the daily update, column 4 divided by column 7: 
  U(t) = #asymp / n*(t) 
This allows us to estimate S(t) as 
  S*(t) = (0.89+U(t)+1/7)/2.5 
The result is listed in column 8. S(t) means the number of persons an asymptomatic 
carrier would infect under the social distancing rule on day t, on average. Since the 
social distancing rule did not change during that week, we would expect S(t) to stay 
relatively constant, and indeed we see a rather steady infection rate. Note, this 
estimated value of S(t) would be lower, if the family cluster size (currently set to 2.5) 
is high, and vice versa. 
 
Based on the above table, we would predict that the UCTP will discover fewer than 
42 positive cases. If only a fraction x of the population will go for the UCTP test, and if 
x is a random sample of the population, then the number of positive would be 42x. 
 
4. Postlogue 
 
After the UCTP is over, on September 15, the Hong Kong government gave the result. 
A total of 32 positive cases2 were discovered by testing a total of about 1.78M 
people. So the result falls within our prediction of (0,42). If the people tested is a 
random sample, then the 32 positive would indicate the asymptomatic carrier group 
size to be: 
  n(1-Sept) = 32*7000000/1780000 = 126 
 
Since our model is a very rough one, intended to find a ball-park estimate of the 
asymptomatic carrier group size, the discrepancy is within our expectations. There 
are a couple of reasons that our prediction is even better than it looks. First, the 
group that went for the test is most probably not a random sample, with the higher 
risk people more likely to have volunteered to get tested. Secondly, since the test 
went on for two weeks, additional people could have been infected, increasing the 
pool of people to be found positive.  
 
The government also reported the cost for Hong Kong: 530M Hong Kong dollars, 

                                                      
2 Besides these 32 cases, there were another 10 other positive cases discovered by UCTP. Five of the 
10 were old cases who have already recovered from Covid-19; the other five either had symptoms or 
were linked cases that were first discovered by testing in hospitals. 



covering mostly the pay for medical staff to collect the specimens for the test, 
transportation and publicity. The test analysis was carried out by a team from 
mainland China, and did not incur cost to Hong Kong. 
 
5. Discussion and conclusions 
 
In this note, we showed some simple model/methods to analyze daily updates of 
Covid-19 cases, to estimate the number of asymptomatic cases found by a Universal 
Community Testing Program, like the one recently implemented in Hong Kong. We 
elaborated on some assumptions used in our analysis, to clarify the soundness of the 
very rough analysis. 
 
There is certainly room for further analysis. Some of the other statistics published in 
the daily updates seem quite relevant, but we have not exploited in this analysis. For 
example, the number of local cases not linked to any earlier cases; this should be 
correlated to the asymptomatic group size, as well as the effectiveness of current 
social distancing policies. The government report also gives the larger clusters they 
found, for example at some nursing homes, or special work places where social 
distancing rules are relaxed. The existence of these larger groups should also affect 
our analysis since we assume each case is independent and take averages in various 
parameters. 
 
The purpose of our analysis is to help better evaluation and review of testing policies. 
There has been a lot of criticism and counter arguments with respect to the UCTP. 
The most common criticism is that the UCTP is not cost effective. If we look at a 
single policy, such as the UCTP, cost-effectiveness becomes a value judgement, of 
how much you are willing to pay to discover each asymptomatic carrier out there, at 
a given time. Instead, we can look more closely at alternative testing policies. For 
example, instead of a UCTP, if we spread our money and efforts over a longer period 
of time, instead of testing 1.5M people all at one time, we put the money to test 60K 
high risk people each week for 25 weeks, would it be more effective? After all, no 
one would expect Covid-19 to completely go away after the UCTP, considering that 
we will implement travel bubble and open up schools in the coming months. 
Comparing alternative testing strategies is no longer just value judgement, and can 
lead to better policies. 
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