
Chapter 9
Evaluating Feature Importance for
Re-Identification

Chunxiao Liu, Shaogang Gong, Chen Change Loy, and Xinggang Lin

Abstract Person re-identification methods seek robust person matching through
combining feature types. Often, these features are assigned implicitly with a single
vector of global weights, which are assumed to be universally and equally good for
matching all individuals, independent to their different appearances. In this study,
we present a comprehensive comparison and evaluation of up-to-date imagery fea-
tures for person re-identification. We show that certain features play more important
roles than others for different people. To that end, we introduce an unsupervised ap-
proach to learning a bottom-up measurement of feature importance. This is achieved
through first automatically grouping individuals with similar appearance character-
istics into different prototypes/clusters. Different features extracted from different
individuals are then automatically weighted adaptively driven by their inherent ap-
pearance characteristics defined by the associated prototype. We show comparative
evaluation on the re-identification effectiveness of the proposed prototype-sensitive
feature importance based method as compared to two generic weight based global
feature importance methods. We conclude by showing that their combination is able
to yield more accurate person re-identification.
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Fig. 9.1: Two examples of a pair of a probe image against a target (gallery) image,
together with the rank of correct matching by different feature types independently.

9.1 Introduction

Visual appearance-based person re-identification aims to establish a visual match
between two imagery instances of the same individual appearing at different loca-
tions and times under unknown viewing conditions which are often significantly
different. Solving this problem is non-trivial owing to both very sparse samples of
the person of interest, often a single example imagery to compare against, and the
unknown viewing condition changes including visual ambiguities and uncertainties
caused by illumination changes, viewpoint and pose variations, and inter-object oc-
clusion [16, 27, 28]. In order to cope with sparsity of data and the challenging view
conditions, most existing methods [17, 9, 8] combine different appearance features,
such as colour and texture, to improve reliability and robustness in person matching.
Typically, feature histograms are concatenated and weighted in accordance to their
importance, i.e.their discriminative power in distinguishing a target of interest from
other individuals.

Current re-identification techniques [33, 41, 30, 19] assume implicitly a feature
weighting or selection mechanism that is global, i.e. a set of generic weights on
feature types invariant to a population. That is to assume a single weight vector (or a
linear weight function) that is globally optimal for all people. For instance, one often
assumes colour is the most important (intuitively so) and universally a good feature
for matching all individuals. In this study, we refer such a generic weight vector
as a Global Feature Importance (GFI) measure. They can be learned either through
boosting [19], rank learning [33], or distance metric learning [41]. Scalability is
the main bottleneck of such approaches as the learning process requires exhaustive
supervision on pairwise individual correspondence from a known dataset.

Alternatively, we consider that certain appearance features are more important
than others in describing an individual and distinguishing him/her from other peo-
ple. For instance, colour is more informative to describe and distinguish an individ-
ual wearing textureless bright red shirt, but texture information can be equally or
more critical for a person wearing plaid shirt (Fig. 9.1). It is therefore undesirable
to bias all the weights to the features that are universally good for all individuals.
Instead, feature weighting should be able to selectively distribute different weights
adaptively according to the informativeness of features given different visual ap-
pearance attributes under changing viewing conditions and for different people. By
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visual appearance attributes, we refer to conceptually meaningful appearance char-
acteristics of an individual, e.g.dark shirt, blue jeans.

In this study, we first provide a comprehensive review of various feature rep-
resentations and weighting strategies for person re-identification. In particular, we
investigate the roles of different feature types given different appearance attributes
and give insights into what features are more important under what circumstances.
We show that selecting features specifically for different individuals can yield more
robust re-identification performance than feature histogram concatenation with GFI
as adopted by [37, 27].

It is non-trivial to quantify feature importance adaptively driven by specific ap-
pearance attributes detected on an individual. A plausible way is to apply supervised
attribute learning method (see Chapters 13 and 17), i.e.training a number of attribute
detectors to cover exhaustive set of possible attributes, and then defining feature im-
portance associated to each specific attribute. This method requires expensive anno-
tation and yet the annotation obtained may have low quality due to inevitable visual
ambiguity. Previous studies [18, 10, 29] have shown great potentials in using unsu-
pervised attributes in various computer vision problems such as object recognition.
Despite that the unsupervised attributes are not semantically labelled or explicitly
named, they are discriminative and correlated with human attribute perception.

Motivated by the unsupervised attribute studies, we investigate here a random
forests-based method to discover prototypes in an unsupervised manner. Each pro-
totype reveals a mixture of attributes to describe specific population of persons
with similar appearance characteristics, such as wearing colourful shirt and black
pants. With the discovered prototypes, we further introduce an approach to quan-
tify the feature importance specific for an individual driven by his/her inherent ap-
pearance attributes. We call the discovered feature importance Prototype-Sensitive
Feature Importance (PSFI). We conduct extensive evaluation using four different
person re-identification benchmark datasets and show that combining prototype-
sensitive feature importance with global feature importance can yield more accu-
rate re-identification without any extra supervision cost as compared to existing
learning-based approaches.

9.2 Recent Advances

Most person re-identification methods benefit from integrating several types of fea-
tures [17, 9, 33, 41, 19, 37, 1, 36, 14, 8, 26]. In [17], weighted colour histogram
derived from maximally stable colour regions (MSCR) and structured patches are
combined for visual description. In [9], histogram plus epitome features are pro-
posed as a human signature. Essentially, they explore the combination of colour and
texture properties on the human appearance but with more specific feature types.
There are a number of reviews on features and feature evaluation for person re-
identification [1, 7]. In [1], several colour and covariance features are compared;
whilst in [7], local region descriptors such as SIFT and SURF are evaluated.
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A global feature importance scheme is often adopted in existing studies to com-
bine different feature types by assuming that certain features are universally more
important under any circumstances, regardless possible changes (often significant)
in viewing conditions between the probe and gallery views and specific visual ap-
pearance characteristics of different individuals. Recent advances based on metric
learning or ranking [33, 41, 30, 19, 21, 2] can be considered as data-driven global
feature importance mining techniques. For example, the ranking support vector ma-
chines (RankSVM) method [33] converts the person re-identification task from a
matching problem into a pairwise binary classification problem (correct match vs.
incorrect match), and aims to find a linear function to weight the absolute difference
of samples via optimisation given pairwise relevance constraints. The Probabilistic
Relative Distance Comparison (PRDC) [41] maximises the probability of a pair of
true match having a smaller distance than that of a wrong matched pair. The out-
put is an orthogonal matrix that encodes the global importance of each feature. In
essence, the learned global feature importance reflects the stability of each feature
component across two cameras. For example, if two camera locations are under sig-
nificantly different lighting conditions, the colour features will be less important
as they are unstable/unreliable. A major weakness of this type of pairwise learning
based methods is their potential limitation on scalability since the supervised learn-
ing process requires exhaustive supervision on pairwise correspondence, i.e. the
building of a training set is cumbersome as it requires to have for each subject a pair
of visual instances. The size of such a pairwise labelled dataset required for model
learning is difficult to be scaled up.

Schwartz and Davis [36] propose a feature selection process depending on the
feature type and the location. This method, however, requires labelled gallery im-
ages to discover the gallery-specific feature importance. To relax such conditions,
in this work we investigate a fully unsupervised learning method for adaptive fea-
ture importance mining which aims to be more flexible (attribute-driven) without
any limitations to a specific gallery set. A more recent study in [34] explores proto-
type relevance for improving processing time in re-identification. In a similar spirit
but from a different perspective, this study investigates salient feature importance
mining based on prototype discovery for improving matching accuracy. In [23], a
supervised attribute learning method is proposed to describe the appearance for each
individual. However, it needs massive human annotation of attributes which is labor
consuming. In contrast, we explore in an unsupervised way to discover the inherent
appearance attributes.

9.3 Feature Representation

Different types of visual appearance features have been proposed for person re-
identification, including colour histogram [17, 22], texture filter banks [33], shape
context [37], covariance [4, 6, 3], and histogram plus epitome [9]. In general,
colour information is dominant when the lighting changes is not severe, as colour
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Fig. 9.2 A spatial representa-
tion of human body [33, 41]
is used to capture visually
distinct areas of interest. The
representation employs six
equal sized horizontal strips
in order to roughly capture the
head, upper and lower torso,
and upper and lower legs.
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is more robust to viewpoint changes as compared to other features. Although tex-
ture or structure information can be more stable under significant lighting changes,
they are sensitive to changes in viewpoint and occlusion. As shown in [17, 9], re-
identification matching accuracy can be improved by combining several features so
as to gain benefit from different and complementary information captured by differ-
ent features.

In this study, we investigate a mixture of commonly used colour, structure, and
texture features for re-identification, similar to those employed in [33, 19], plus a
few more additional local structure features. In particular, the following range of
imagery features are considered:

• Colour Histogram: HSV colour histogram is employed in [17, 9, 36]. Specif-
ically, in [17] they generate a weighted colour histogram according to pixel’s
location to the vertical symmetry axes of the human body. The intuition is that
central pixels should be more robust to pose variations. HSV is effective in de-
scribing the bright colours, such as red, but not robust to neutral colour as the
hue channel is undefined. An alternative representation is to combine the colour
histograms from several complementary colour spaces, such as HSV, RGB, and
YCbCr [41, 33, 19, 21].

• Texture and Structure: Texture and structure patterns are commonly found on
clothes, such as the plaid (see Fig.9.1) or the stripes (see Fig.9.5(b)) on a sweater.
Possible texture descriptors include Gabor and Schmid filters [33, 19] or local
binary patterns (LBP) [39]. As to structure descriptor, histogram of gradient
(HOG) [15] that prevails in human detection is considered in [37, 36, 1]. As
these texture and structure features are computed on the intensity image, they
play an important role in establishing correspondence when colour information
degrades under drastic illumination changes and/or change of camera settings.

• Covariance: Covariance feature has been reported to be effective in [4, 5, 25, 20].
It has three advantages: (1) it reflects second-order regional statistical property
discarded by histogram; (2) different feature types such as colour and gradient
can be readily integrated; (3) it is versatile with no limitation to the region’s
shape, suggesting its potential to be integrated with most salient region detectors.
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In this study, we divide a person image into six horizontal stripes (see Fig. 9.2).
This is a generic human body partitioning method that is widely used in exist-
ing methods [33, 41] to capture distinct areas of interest. Alternative partitioning
schemes, such as symmetry segmentation [9] or pictorial model [14], are also appli-
cable. A total of 33 feature channels including RGB, HSV, YCbCr, Gabor (8 filters),
Schmid (13 filters), HOG, LBP, and Covariance are computed for each stripe. For
the first 5 types of features, each channel is represented by a 16-dimensional vector.
A detailed explanation of computing the former 5 features can be found in [33]. For
HOG feature, each strip is further divided into 4 × 4 pixels cell and each cell is rep-
resented by a 9-dimensional gradient histogram, yielding a 36-dimensional feature
vector for each strip. For LBP feature, we compute a 59-dimensional local binary
pattern histogram on the intensity image. As to covariance feature for a given strip
R ⊂ I, let {zm}m=1...M be the feature vectors extracted from M pixels inside R. The
covariance descriptor of region R is derived by

CR =
1

M−1

M

∑
m=1

(zm−µ)(zm−µ)T

where µ denotes the mean vector of {zm}. Here we use the following features to
reflect information of each pixel z = [H,S,V, Ix, Iy, Ixx, Iyy] where H, S, V are the
HSV colour values. The first-order (Ix and Iy) and second-order (Ixx and Iyy) image
derivatives are calculated through the filters [−1,0,1]T and [−1,2,−1]T, respec-
tively. The subscript x or y denotes the direction for filtering. Thus the covariance
descriptor is a 7×7 matrix. While in this form covariance matrix cannot be directly
combined with other features to form a single histogram representation. Hence, we
follow the approach proposed by [20] to convert the 7×7 covariance matrix C into
sigma points, expressed as follows:

s0 = µ (9.1)
si = µ +α(

√
C)i (9.2)

si+d = µ−α(
√

C)i, (9.3)

where µ is the mean value of sample data and (
√

C)i denotes the i-th column of the
covariance matrix square root. Parameter α is a scalar weight for the elements in C
and is set to α =

√
2 for Gaussian data. Thus, the vector form of covariance feature

can be obtained by concatenation of all sigma points, in our case resulting in a 105-
dimensional vector. Therefore, it allows for integration of other feature channels
into one compact feature vector.

9.4 Unsupervised Mining of Feature Importance

Given the range of features included in our feature representation, we consider an
unsupervised way to compute and evaluate a bottom-up measurement of feature im-
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are indicated by red solid arrows and testing steps are denoted by blue slash arrows.
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portance driven by intrinsic appearance of individuals. To that end, we propose a
three-steps procedure as follows: (1) automatic discovery of feature prototypes by
exploiting clustering forests; (2) prototype-sensitive feature importance mining by
classification forests; (3) determining the feature importance of a probe image on-
the-fly adapting to changes in viewing condition and inherent appearance character-
istics of individuals. An overview of the proposed approach is depicted in Fig. 9.3.

Our unsupervised feature importance mining method is formulated based on
random forests models, particularly the clustering forests [24] and classification
forests [11]. Before introducing and discussing the proposed method, we briefly
review the two forests models.

9.4.1 Random Forests

Random forests [11] are a type of decision trees constructed by an ensemble learn-
ing process, and can be designed for performing either classification, clustering, or
regression tasks. Random forests has a number of specific properties that make it
suitable for the re-identification problem. In particular

1. It defines the pairwise affinity between image samples by the tree structure it-
self, therefore avoiding manual definition of distance function.

2. It selects implicitly optimal features via optimisation of the well-defined in-
formation gain function [11]. This feature selection mechanism is beneficial to
mitigating noisy or redundant visual features in our representation.

3. It performs empirically well on high-dimensional input data [13], a problem
that is typical in person re-identification problem.

In addition to the three aforementioned characteristics, there are other attractive gen-
eral properties in random forests such as it approximates the Bayes optimal classi-
fier [35], it handles inherently multiple-class problem, and it provides probabilistic
outputs.

9.4.1.1 Classification Forests

A common type of random forests is the classification forests. Classification
forests [11, 35] consists of a set of Tclass binary decision trees T(x) : X→RK , where
X = RD is the D-dimensional feature space and RK = [0,1]K represents the space
of class probability distribution over the label space C= {1, . . . ,K}. During testing,
given an unseen sample x∗ ∈ RD, each decision tree produces a posterior pt(c|x),
and a probabilistic output from the forests can be obtained via averaging

p(c|x∗) = 1
Tclass

Tclass

∑
t

pt(c|x∗). (9.4)
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The final class label c∗ can be obtained as c∗ = argmaxc p(c|x∗).
In the learning stage, each decision tree is trained independently from each other

using a random subset of training samples, i.e. bagging [11]. Typically, one draws
2
3 of the original training samples randomly for growing a tree, and reserves the
remaining as out-of-bag (oob) validation samples. We will exploit these oob samples
for computing importance of each feature (Section 9.4.3).

Growing a decision tree involves an iterative node splitting procedure that op-
timises a binary split function of each internal node. We define the split function
as

h(x,θ) =

{
0 if xθ 1 < θ 2

1 otherwise
. (9.5)

The above split function is parameterised by two parameters: (i) a feature dimension
θ 1 ∈ {1, . . . ,D}, and (ii) a threshold θ 2 ∈ R. Based on the outcome of Eqn. (9.5), a
sample x arriving at the split node will be channelled to either the left or right child
nodes.

The best parameter θ ∗ is chosen by optimising

θ ∗ = argmax
θ∈Θ

∆I, (9.6)

where Θ is a randomly sampled set of
{

θ i}. The information gain ∆I is defined as
follow

∆I= Ip−
nl

np
Il−

nr

np
Ir, (9.7)

where p, l, and r refer to a splitting node, the left, and right child, respectively; n
denotes the number of samples at a node, with np = nl +nr. The I can be computed
as either the entropy or Gini impurity [12]. Throughout this paper we use the Gini
impurity.

9.4.1.2 Clustering Forests

In contrast to classification forests, clustering forests does not require any ground
truth class labels for learning. Therefore, it is suitable for our problem of unsuper-
vised prototype discovery. Clustering forests consists of Tcluster decision trees whose
leaves define a spatial partitioning or grouping of the data. Although the clustering
forests is an unsupervised model, it can be trained using the classification forests op-
timisation routine by following the pseudo two-class algorithm proposed in [11, 24].
In particular, in each splitting node we add np uniformly distributed pseudo points
x̄ = {x̄1, . . . , x̄D}, with x̄i ∼ U(xi|min(xi) ,max(xi)) into the original data space.
With this strategy, the clustering problem becomes a canonical classification prob-
lem that can be solved by the classification forests training method discussed above.
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9.4.2 Prototype Discovery

Now we discuss how to achieve feature importance mining through a clustering-
classification forests model. First we describe how to achieve prototype discovery
by clustering forests (Fig. 9.3(a)-(e)). In contrast to a top-down approach to spec-
ifying appearance attributes and mining features to support each attribute class in-
dependently [23], in this study we investigate bottom-up approach to discovering
automatically representative clusters (prototypes) corresponding to similar constitu-
tions of multiple classes of appearance attributes.

To that end, we first perform unsupervised clustering to group a given set of
unlabelled images into several prototypes or clusters. Each prototype composes of
images that possess similar appearance attributes, e.g.wearing colourful shirt, with
backpack, dark jacket (Fig. 9.3(e)). More precisely, given an input of n unlabelled
images {Ii}, where i = 1, . . . ,n, feature extraction f (·) is first performed on every
image to extract a D-dimensional feature vector, that is f (I) = x = (x1, . . . ,xD)

T ∈
RD (Fig. 9.3(b)). We wish to discover a set of prototypes c∈C= {1, . . . ,K}, i.e.low-
dimensional manifold clusters that group images {I} with similar appearance at-
tributes.

We treat the prototype discovery problem as a graph partitioning problem, which
requires us to first estimate the pairwise similarity between images. We adopt the
clustering forests [11, 24] for pairwise similarity estimation. Formally, we con-
struct clustering forests as an ensemble of Tcluster clustering trees (Fig. 9.3(c)).
Each clustering tree t defines a partition of the input samples x at its leaves,
l(x) : RD → L ⊂ N, where l represents a leaf index and L is the set of all leaves
in a given tree. Now for each tree, we are able to compute an n× n affinity matrix
At , with each element At

i j defined as

At
i j = exp−distt(xi,x j), (9.8)

where

distt (xi,x j) =

{
0 if l(xi) = l(x j)

∞ otherwise
. (9.9)

Following Eqn. (9.9), we assign closest affinity=1 (distance=0) to samples xi and x j
if they fall into the same leaf node, and affinity=0 (distance=∞) otherwise. To obtain
a smooth forests affinity matrix, we compute the final affinity matrix as

A =
1

Tcluster

Tcluster

∑
t=1

At . (9.10)

Given the affinity matrix, we perform spectral clustering algorithm [31] to parti-
tion the weighted graph into K prototypes. Thus, each unlabelled probe image {Ii}
is assigned to a prototype ci (Fig. 9.3(e)). In this study, K is the cluster number and
pre-defined, but its value can be readily estimated automatically using alternative
methods such as [32, 38].
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9.4.3 Prototype-Sensitive Feature Importance

In this section we discuss how to derive the feature importance for each prototype
generated by the previous prototype discovery. As discussed in Section 9.1, unlike
the global feature importance that is assumed to be universally good for all images,
prototype-sensitive feature importance is designed to be specific to prototype char-
acterised by different appearance characteristics. That is each prototype c has its
own prototype-sensitive weighting or feature importance (PSFI)

wc = (wc
1, . . . ,w

c
D)

T, (9.11)

of which high value should be assigned to unique features of that prototype. For ex-
ample, texture features gain higher weights than others if the images in the prototype
have rich textures but less bright colours.

Based on the above consideration, we compute the importance of a feature ac-
cording to its ability in discriminating different prototypes. The forests model nat-
urally reserves a validation set or out of bag (oob) samples for each tree during
bagging (Section 9.4.1). This property permits a convenient and robust way of eval-
uating the importance of individual features.

Specifically, we train a classification random forests [11] using {x} as inputs and
treating the associated prototype labels {c} as classification outputs (Fig. 9.3(f)). To
compute the feature importance, we first compute the classification error εc, t

d for
every dth feature in prototype c. Then we randomly permute the value of the dth
feature in the oob samples and compute the ε̃ c, t

d on the perturbed oob samples of
prototype c. The importance of the dth feature of prototype c is then computed as
the error gain

wc
d =

1
Tclass

Tclass

∑
t=1

(ε̃ c, t
d − εc, t

d ). (9.12)

Higher value in wc
d indicates higher importance of the dth feature in prototype c.

Intuitively, the dth feature is important if perturbing its value in the samples causes
a drastic increase in classification error, therefore suggests its critical role in dis-
criminating between different prototypes.

9.4.4 Ranking

With the method described in Section 9.4.3, we obtain PSFI for each prototypes.
This subsequently permits us to evaluate bottom-up feature importance of an unseen
probe image, xp on-the-fly driven by its intrinsic appearance prototype. Specifically,
following Eqn. (9.4), we classify xp using the learned classification forests to obtain
its prototype label cp

cp = argmax
c

p(c|xp), (9.13)
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and obtain accordingly its feature importance wcp (Fig. 9.3(h)). Then we compute
the distance between xp against a feature vector of a gallery/target image xg using
the following function

dist(xp,xg) = ‖(wcp)T|xp−xg|‖1 (9.14)

The matching ranks of xp against a gallery of images can be obtained by sorting the
distances computed from Eqn. (9.14). A smaller distance results in a higher rank.

9.4.5 Fusion of Different Feature Importance Strategies

Contemporary methods [33, 41] learn a weight function that captures the global
environmental viewing condition changes which cannot be derived from the unsu-
pervised method described so far. Thus we investigate the fusion between the global
feature weight matrix obtained from [33, 41] and our prototype-sensitive feature
importance vector w to gain more accurate person re-identification performance.

In general, methods [33, 41] aim to optimise a distance metric so that a true match
pair lies closer than a false match pair, given a set of relevance rank annotations. The
distance metric can be written as

d(xp
i ,x

g
j) = (xp

i −xg
j)
TV(xp

i −xg
j). (9.15)

The optimisation process involves finding a semi-positive definite global feature
weight matrix V. There exist several global feature weighting methods, most of them
differing by different constraints and optimisation schemes they use (see Section 9.2
for discussion).

To combine our proposed prototype-sensitive feature importance with the global
feature importance, we adopt a weighted sum scheme as follows

distfusion(xp,xg) = α‖(wcp)T|xp−xg|‖1 +(1−α)‖VT|xp−xg|‖1, (9.16)

where V is the global weight matrix obtained from Eqn. (9.15) and α is a parameter
that balances global and prototype-sensitive feature importance scores. We found
that setting α in the range of [0.1,0.3] gives stable empirical performance across all
the datasets we tested. We fix it to 0.1 in our experiments. Note that setting a small
α implies a high emphasis on the global weight derived from supervised learning.
This is reasonable since performance gain in re-identification still has to rely on
the capability of capturing the global viewing condition changes, which requires
supervised weight learning. We shall show in the following evaluation that this fused
metric is able to benefit from both feature importance mining from individual visual
appearance changes whilst taking into account the generic global environmental
viewing condition changes between camera views.
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(a) VIPeR (b) i-LIDS

(c) GRID (d) PRID2011

Fig. 9.4: Examples images of different datasets used in our evaluation. Each col-
umn denotes an image pair of the same person. Note the large appearance variations
within an image pair. In addition, note the unique appearance characteristics of dif-
ferent individuals, which can potentially be used to discriminate him/her from other
candidates.

9.5 Evaluation

In Section 9.5.2, we first investigate the re-identification performance of using dif-
ferent features given individuals with different inherent appearance attributes. In
Section 9.5.3, the qualitative results of prototype discovery are presented. Sec-
tion 9.5.4 then compares feature importance produced by the proposed unsupervised
bottom-up prototype discovery method and two top-down GFI methods, namely
RankSVM [33] and PRDC [41]. Finally, we report the results on combining the
bottom-up and the top-down feature importance mining strategies.
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9.5.1 Settings

We first describe the experimental settings and implementation details.

Datasets - Four publicly available person re-identification datasets are used for
evaluation. They are VIPeR [19], i-LIDS Multiple-Camera Tracking Scenario (i-
LIDS) [40], QMUL underGround Re-IDentification (GRID) [27], and Person Re-
IDentification 2011 (PRID2011) [20]. Example images of these datasets are shown
in Fig. 9.4. More specifically,

1. The VIPeR dataset (see Fig. 9.4(a)) contains 632 persons, each of which has
two images captured in two different outdoor views. The dataset is challeng-
ing due to drastic appearance difference between most of the matched image
pairs caused by viewpoint variations and large illumination changes at outdoor
environment (see also Fig. 9.5(a)(b)).

2. The i-LIDS dataset (see Fig. 9.4(b)) was captured in a busy airport arrival hall
using multiple cameras. It contains 119 people with a total of 476 images, with
an average of four images per person. Apart from illumination changes and pose
variations, many images in this dataset are also subject to severe inter-object
occlusion (see also Fig. 9.5(c)(d)).

3. The GRID dataset (see Fig. 9.4(c)) was captured from 8 disjoint camera views
installed in a busy underground station. It was divided into a probe and a gallery
sets. The probe set contains 250 persons, whilst the gallery set contains 1025
persons in which an additional 775 persons were collected who do not match
any images in the probe set. The dataset is challenging due to severe inter-
object occlusion, large viewpoint variations, and poor image quality (see also
Fig. 9.5(e)(f)).

4. The PRID2011 dataset (see Fig. 9.4(d)) was captured from 2 outdoor cameras.
We use the single-shot version in which each person is only associated with
one picture in a camera. The two cameras contains 385 and 749 individuals
separately, within which the first 200 persons have two views. The challenge
lies in severe lighting changes caused by the sunlight (see also Fig. 9.5(g)(h)).

A summary of these datasets is given in Table. 9.1.

Features - In Section 9.5.2, we employ all the feature types discussed in Sec-
tion 9.3 for a comprehensive evaluation of their individual performance in person
re-identification. In Section 9.5.3, we select from the aforementioned feature chan-
nels to form a feature subset, which is identical to those used in existing GFI mining
methods [33, 41, 30]. Having the similar set of features allows a fair and comparable
evaluation against the methods. Specifically, we consider 8 colour channels (RGB,
HSV and YCbCr)1 and the 21 texture filters (8 Gabor filters and 13 Schmid filters)
applied to luminance channel [33]. Each channel is represented by a 16-dimensional
vector. Since we divide the human body into 6 strips and extract features for each

1 Since HSV and YCbCr share similar luminance/brightness channel, dropping one of them results
in a total of 8 channels.
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Table 9.1: Details of the VIPeR, i-ILDS, GRID and PRID2011 datasets.

Name Environment Resolution #probe #gallery Challenges

VIPeR outdoor 48×128 632 632 viewpoint &
illumination changes

i-LIDS indoor airport an average of 119 119 viewpoint &
arrival hall 60×150 illumination changes &

inter-object occlusion
GRIDa underground an average of 250 1050 inter-object occlusion &

station 70×180 viewpoint variations
PRID2011b outdoor 64×128 385 749 severe lighting changes

a 250 matched pairs in both views.
b 200 matched pairs in both views.

strips, concatenating all the feature channels from all the strips thus results in a
2784-dimensional feature vector for each image.

Evaluation Criteria - We use `1-norm as the matching distance metric. The match-
ing performance is measured using an averaged cumulative match characteristic
(CMC) curve [19] over 10 trials. The CMC curve represents the correct matching
rate at the top r ranks. We select all the images of p person to build the test set.
The remaining data are used for training. In the test set of each trial, we choose one
image from each person randomly to set up the test gallery set and the remaining
images are used as probe images.

Implementation Details - For prototype discovery, the number of cluster K is set
to 5 for the i-LIDS dataset and 10 for the other three datasets, roughly based on the
amount of training samples in each of the datasets. As for the forests’ parameters,
we set the number of trees of clustering and classification forests as Tcluster = Tclass =
200. In general, we found that better performance is obtained when we increase the
number of trees. For instance, the average rank 1 recognition rates on VIPeR dataset
are 8.32, 9.56 and 10.00 when we set Tcluster to 50, 200 and 500, respectively. The
depth of a tree is governed by two criteria - a tree will stop growing if the node size
reaches 1, or the information gain is less than a pre-defined value.

9.5.2 Comparing Feature Effectiveness

We assume that certain features can be more important than others in describing an
individual and distinguishing him/her from other people. To validate this hypothesis,
we analyse the matching performance of using different features individually as a
proof of concept.

We first provide a few examples in Fig. 9.5 (also presented in Fig. 9.1) to com-
pare the ranks returned by using different feature types. It is observed that no single
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feature type is able to constantly outperform the others. For example, for individu-
als wearing textureless but colourful and bright clothing, e.g.Fig. 9.5(a),(c) and (g),
the colour features generally yield a higher rank. For person wearing clothing with
rich texture (on the shirt or skirt), e.g. Fig. 9.5 (b) and (d), texture features espe-
cially the Gabor features and the LBP features tend to dominate. The results suggest
that certain features can be more informative than others given different appearance
attributes.

The overall matching performance of using individual feature types is presented
in Fig. 9.6. In general, HSV and YCbCr features exhibit very close performances,
which are much superior over all other features. This observation of colours being
the most informative features agreed with the past studies [19]. Among the tex-
ture and structure features, the Gabor filter banks produce the best performance
across all the datasets. Note that the performance of covariance feature can be fur-
ther improved when combined with a more elaborative region partitioning scheme,
as shown in [5].

One may consider concatenating all the features together, with the hope that these
features could complement each other leading to better performance. From our ex-
periments, we found that a naive concatenation of all feature histograms with uni-
form weighting does not necessary yield better performance (sometimes even worse
than using a single feature type), as shown by the ‘Concatenated Features’ perfor-
mance in Fig. 9.6. The results suggest a more careful feature weighting is necessary
based on the level of informativeness of each feature.

In the ‘Best Ranked Features’ strategy, the final rank is obtained by selecting
the best feature that returned the highest rank for each individual, e.g. selecting
HSV feature for Fig. 9.5(e) whilst choosing LBP feature for both Fig. 9.5(b) and
Fig. 9.5(h). As expected, the ‘Best Ranked Features’ strategy yields the best per-
formance, i.e. 37.80%, 21.92%, 15.28% and 48.97% improvement of AUC (area
under curve) on the VIPeR, i-LIDS, GRID, and PRID2011 datasets, respectively, in
comparison to ‘Concatenated Features’. The recognition rates at top ranks has been
significantly increased across all the datasets. For example, on the i-LIDS dataset,
the ‘Best Ranked Features’ obtains 92.02% versus 56.30% of concatenated features
at rank 20.

This verification demonstrates that for each individual in most cases there exists
certain type of features (or the ‘Best Ranked Feature’) which can achieve a high
rank, and selecting such ‘Best Ranked Feature’ is critical to a better matching rate.
Based on the analysis from Fig. 9.5, in general these ‘Best Ranked Features’ show
consistency with the appearance attributes for each individual. Therefore, the re-
sults suggest that the overall matching performance can be boosted potentially by
weighting features selectively according to the inherent appearance attributes.
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Fig. 9.5: Feature effectiveness in re-identification – in each subfigure, we show the
probe image and the target image, together with the rank of correct matching by
using different feature types separately.

9.5.3 Discovered Prototypes

It is non-trivial to weigh features in accordance to their associated inherent ap-
pearance attributes. We formulate a method to first discover prototypes, i.e. low-
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Fig. 9.6: The CMC performance comparison of using different features on vari-
ous datasets. ‘Concatenated Features’ refers to the concatenation of all feature his-
tograms with uniform weighting. In the ‘Best Ranked Features’ strategy, ranking
for each individual was selected based on the best feature that returned the highest
rank during matching. Its better performance suggests the importance and potential
of selecting the right features specific to different individuals/groups.

dimensional manifold clusters that aim to correlate features contributing towards
similar appearance attributes.

Some examples of prototypes discovered from the VIPeR dataset are depicted
in Fig. 9.7. Each colour-coded row represents a prototype. A short list of possi-
ble attributes discovered/interpreted in each prototype is given in the caption. Note
that these inherent attributes are neither pre-defined nor pre-labelled, but discovered
automatically by the unsupervised clustering forests (Section 9.4.2).

As shown by the example members in each prototype, images with similar at-
tributes are likely to be categorised into the same cluster. For instance, a majority of
images in the second prototype can be characterised with bright and high contrast
attributes. In the forth prototype, the key attributes are ‘carrying backpack’ and ‘side
pose’. These results demonstrate that the formulated prototype discovering mecha-
nism is capable of generating reasonably good clusters of inherent attributes, which
can be employed in subsequent step for prototype-sensitive feature importance min-
ing.
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Fig. 9.7: Examples of prototypes discovered automatically from the VIPeR dataset.
Each prototype represents a low-dimensional manifold cluster that models similar
appearance attributes. Each image row in the figure shows a few examples of im-
ages in a particular prototype, with their interpreted unsupervised attributes listed as
follows:(1) white shirt, dark trousers; (2) bright and colourful shirt; (3) dark jacket
and jeans; (4) with backpack and side pose; (5) dark jacket and light colour trousers;
(6) dark shirt with texture, back pose; (7) dark shirt and side pose; (8) dark shirt and
trousers; (9) colourful shirt jeans; (10) colourful shirt and dark trousers.

9.5.4 Prototype-Sensitive vs. Global Feature Importance

Comparing Prototype-Sensitive and Global Feature Importance - The aim of
this experiment is to compare different feature importance measures computed by
existing GFI approaches [33, 41] and the proposed PSFI mining approach. The
RankSVM [33] and PRDC [41] (see Section 9.1) were evaluated using the authors’
original code. The global feature importance scores/weights were learned using the
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Fig. 9.8: Comparison of global feature importance weights produced by RankSVM
[33] and PRDC [41] against those by prototype-sensitive feature importance. These
results are obtained from the VIPeR and i-LIDS datasets.

labelled images, and averaged over 10-fold cross validation. We set the penalty pa-
rameter C in RankSVM to 100 for all the datasets and used the default parameter
values for PRDC.

The left pane of Fig. 9.8 and Fig. 9.9 shows the feature importance discovered by
both the RankSVM and PRDC. For PRDC, we only show the first learned orthog-
onal projection, i.e. feature importance. Each region in the partitioned silhouette
images are masked with the labelling colour of the dominant feature. In the feature
importance plot, we show in each region the importance of each type of features.
The importance of a certain feature type is derived by summing the weight of all the
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Fig. 9.9: Comparison of global feature importance weights produced by RankSVM
[33] and PRDC [41] against those by prototype-sensitive feature importance. These
results are obtained from the GRID and PRID2011 datasets.

histogram bins that belong to this type. The same steps are repeated to depict the
prototype-sensitive feature importance on the right pane.

In general, the global feature importance emphasises more on the colour features
for all the regions, whereas the texture features are assigned higher weights in the
leg region than the torso region. This weight assignment for feature importance min-
ing is applied universally to all images. In contrast, the prototype-sensitive feature
importance is more adaptive to changing viewing conditions and appearance charac-
teristics. For example, for image regions with colourful appearance, e.g.Fig. 9.8(a-
1) and Fig. 9.9(b-2), the colour features in torso region are assigned with higher
weights than the texture features. For image regions with rich texture, such as the
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stripes on the jumper (Fig. 9.8(a)-3), floral skirt (Fig. 9.8(b-2)), and bag (Fig. 9.8(a-
4), Fig. 9.8(b-4), Fig. 9.9(b-3) and Fig. 9.9(b-4)), the importance of texture features
increase. For instance, in Fig. 9.8(b)-2, the weight of Gabor feature in the fifth region
is 36.7% higher than that observed in the third region.

Table 9.2: Comparison of top rank matching rate (%) on the four benchmark
datasets. r is the rank and p is the size of gallery set.

Methods VIPeR ( p = 316 ) i-LIDS (p = 50)
r = 1 r = 5 r = 10 r= 20 r = 1 r = 5 r = 10 r = 20

GFI [37, 27] 9.43 20.03 27.06 34.68 30.40 55.20 67.20 80.80
PSFI 9.56 22.44 30.85 42.82 27.60 53.60 66.60 81.00

RankSVM [33] 14.87 37.12 50.19 65.66 29.80 57.60 73.40 84.80
PSFI+RankSVM 15.73 37.66 51.17 66.27 33.00 58.40 73.80 86.00

PRDC [41] 16.01 37.09 51.27 65.95 32.00 58.00 71.00 83.00
PSFI+PRDC 16.14 37.72 50.98 65.95 34.40 59.20 71.40 84.60

Methods GRID ( p = 900 ) PRID2011 (p = 649)
r = 1 r = 5 r = 10 r= 20 r = 50 r = 1 r = 5 r = 10 r = 20 r = 50

GFI [37, 27] 4.40 11.68 16.24 24.80 36.40 3.60 6.60 9.60 16.70 31.60
PSFI 5.20 12.40 19.92 28.48 40.80 0.60 2.00 4.00 7.30 14.20

RankSVM [33] 10.24 24.56 33.28 43.68 60.96 4.10 8.50 12.50 18.90 31.70
PSFI+RankSVM 10.32 24.80 33.76 44.16 60.88 4.20 8.90 12.50 19.70 32.20

PRDC [41] 9.68 22.00 32.96 44.32 64.32 2.90 9.50 15.40 23.00 38.20
PSFI+PRDC 9.28 23.60 32.56 45.04 64.48 2.90 9.40 15.50 23.60 38.80

Integrating Global and Prototype-Sensitive Feature Importance - As shown in
Table. 9.2, in comparison to the baseline GFI [37, 27], PSFI yields improved match-
ing rate on the VIPeR and GRID datasets. No improvement is observed on the i-
LIDS and PRID2011 datasets. A possible reason is the small training size in the
i-LIDS and PRID2011 dataset, which leads to suboptimal prototype discovery. This
can be resolved by collecting more unannotated images for unsupervised prototype
discovery. We integrate both global and prototype-sensitive feature importance fol-
lowing the method described in Section 9.4 by setting α = 0.1. An improvement
as much as 3.2% on rank 1 matching rate can be obtained when we combine our
method with RankSVM [33] and PRDC [41] on these datasets. It is not surprising
to observe that the supervised learning-based approaches [33, 41] outperform our
unsupervised approach. Nevertheless, the global approaches benefit from slight bias
of feature weights driven by specific appearance attributes of individuals. The re-
sults suggest that these two kinds of feature importance are not exclusive, but can
complement each other to improve re-identification accuracy.



9 Evaluating Feature Importance for Re-Identification 227

9.6 Findings and Analysis

In this study, we investigated the effect of feature importance for person re-
identification. We summarise our main findings as follows:

Mining Feature Importance for Person Re-Identification - Our evaluation shows
that certain appearance features are more important than others in describing an in-
dividual and distinguishing him/her from other people. In general, colour features
are dominant, not surprisingly, for person re-identification and outperform the tex-
ture or structure features, though illumination changes may cause instability in the
colour features. However, texture and structure features take greater effect when the
appearances contain noticeable local statistics, caused by bag, logo, and repetitive
patterns.

Combining various features for robust person re-identification is non-trivial.
Naively concatenating all the features and applying uniform global weighting to
them does not necessarily yield better performance in re-identification. Our results
show a tangible indication that instead of biasing all the weights to features that
are presumably good for all individuals, distributing selectively some weights to
informative feature specific to certain appearance attributes can lead to better re-
identification performance.

We also find that the effectiveness of prototype-sensitive feature importance min-
ing is dependent on the quantity and quality of training data, in terms of the available
size of the training data and the diversity of underlying attributes in appearance, i.e.
sufficient and non-biased sampling in the training data. Firstly, as shown in the ex-
periment on the i-LIDS dataset, a sufficient number of unlabelled data are desired to
generate robust prototypes. Secondly, it would be better to prepare a training set of
unlabelled images that cover a variety of different prototypes, in order to have non-
biased contributions from different feature types. For example, in the PRID2011
dataset, images with rich structural and texture features are rare. Therefore, the de-
rived feature importance scores for those features are prone to be erroneous.

Hierarchical Feature Importance for Person Re-Identification - The global fea-
ture importance and prototype-sensitive feature importance can be seen organising
themselves in a hierarchical structure, as illustrated in Fig. 9.10. Specifically, the
global feature importance exploited by existing rank learning [33] or distance learn-
ing method [41, 21] learns a feature weighting function to accommodate the feature
inconsistency between different cameras, caused by illumination changes or view-
point variations. The discovered feature weights can be treated as feature importance
in the highest level of the hierarchy, without taking specific individual appearance
characteristics into account. Whilst the prototype-sensitive feature importance aims
to emphasise more on the intrinsic feature properties that can discriminate a given
prototype from the others. Our study shows that these two kinds of feature impor-
tance in different levels of the hierarchy can be complementary to each other in
improving re-identification accuracy.

Though the proposed prototype-sensitive feature importance is capable of reflect-
ing the intrinsic/salient appearance characteristics of a given person, it still lacks the
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Fig. 9.10: Hierarchical structure of feature importance. Global feature importance
aims at weighing more on those features that remain consistent between cameras
from a statistical point of view. Prototype-sensitive feature importance emphasises
more on the intrinsic features which can discriminate a given prototype from the
others. Person-specific feature importance should be capable of distinguishing a
given person from those who are categorised into the same prototype.

ability to differentiate the disparity between two different individuals who fall into
the same prototype. Thus, it would be interesting to investigate person-specific fea-
ture importance that is unique to a specific person, which allows the manifestation
of subtle differences among individuals belong to the same prototype.
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