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Abstract We propose a novel approach to understanding

activities from their partial observations monitored through

multiple non-overlapping cameras separated by unknown time

gaps. In our approach, each camera view is first decomposed

automatically into regions based on the correlation of ob-

ject dynamics across different spatial locations in all camera

views. A new Cross Canonical Correlation Analysis (xCCA)

is then formulated to discover and quantify the time delayed

correlations of regional activities observed within and across

multiple camera views in a single common reference space.

We show that learning the time delayed activity correlations

offers important contextual information for (i) spatial and

temporal topology inference of a camera network; (ii) robust

person re-identification and (iii) global activity interpreta-

tion and video temporal segmentation. Crucially, in contrast

to conventional methods, our approach does not rely on ei-

ther intra-camera or inter-camera object tracking; it thus can

be applied to low-quality surveillance videos featured with

severe inter-object occlusions. The effectiveness and robust-

ness of our approach are demonstrated through experiments

on 330 hours of videos captured from 17 cameras installed

at two busy underground stations with complex and diverse

scenes.
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1 Introduction

In recent years there has been increasing deployment of mul-

tiple camera systems in wide-area public spaces such as air-

ports, underground stations, shopping complexes and road

junctions. To facilitate more efficient multi-camera surveil-

lance and reduce the burden on human operators, growing

research efforts have been undertaken on automated activ-

ity understanding in camera networks, focusing on camera

topology inference (Makris et al. 2004; Tieu et al. 2005;

van den Hengel et al. 2006), person re-identification (Javed

et al. 2003, 2005; Prosser et al. 2008; Gheissari et al. 2006;

Gray and Tao 2008; Hu et al. 2006a; Zheng et al. 2009), and

global activity analysis (Lee et al. 2000; Wang et al. 2010;

Zelniker et al. 2008). In topology inference, the aim is to in-

fer spatial and temporal relationships between cameras. The

task of person re-identification is concerned with associating

people observed at different camera views. As for global ac-

tivity analysis, one wishes to understand activities captured

by multiple cameras holistically by building global activ-

ity models. These three problems are non-trivial, especially

given multiple disjoint cameras with non-overlapping views,

in which global activities can only be observed partially with

different views being separated by unknown time gaps. In

particular, the unknown and often large separation of cam-

eras in space and over time increases the uncertainties in

activity understanding due to drastic feature variations and

temporal discontinuity in visual observations.

Let us first define the term ‘activity’ before we discuss

the motivations of our approach on multi-camera activity

understanding. In this paper, we categorise activities into

global activities and regional activities. A regional activity

refers to an activity that takes place locally in a single region

of a camera view. For instance, passengers walking next to

a train track or sitting on benches on a platform are regional

activities. A global activity, on the other hand, is defined
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Fig. 1 (a) Partial observations of activities observed from different

camera views often form a chain of inter-correlated spatio-temporal

patterns: a group of people (highlighted in green boxes) get off a train

[Cam 8, frame 10409] and subsequently take an upward escalator [Cam

5, frame 10443] which leads them to the escalator exit view [Cam 4,

frame 10452]. (b) Three consecutive frames captured from two differ-

ent cameras at 0.7 frames per second (fps). An object can pass through

the whole view in just three frames. In addition, severe inter-object oc-

clusion and low-quality video are among the key factors that render

object tracking infeasible.

as an activity that involves correlated partial observations

of multiple regional activities across multiple cameras. For

example, a global activity of train departure may involve co-

existing activities taking place at different regions such as

the movements of a train at a track area of a platform, pas-

sengers moving towards the exits of the platform, and pas-

sengers leaving station via escalators (see Fig.1(a)).

The key to activity understanding in multiple non-over-

lapping cameras lies on how well we can link the partial

observations of an activity together for complete and global

interpretation. Specifically, activities of an object in a public

space are inherently context-aware, exhibited through con-

straints imposed by scene layout and the correlated activi-

ties of other objects both in the same camera view and other

views. Consequently the partial observations of a global ac-

tivity are correlated in that they take place following a cer-

tain temporal order with unknown temporal gaps caused by

the spatial distances between camera views. In other words,

these partial observations often form a chain of inter-correlated

spatio-temporal patterns, spanning across different regions

in a networked global view space (see Fig. 1(a) for an ex-

ample). It is therefore necessary to discover and quantify

the correlations between these partial observations in terms

of both temporal order and temporal delays, which provides

important contextual information on the global activities across

multiple camera views. While considerable work has been

done on multi-camera activity understanding, none of them

has addressed the problem of discovering and modelling multi-

camera activity correlations with unknown time delays (see

Sec. 2 for detailed discussion).

An obvious solution to multi-camera activity correla-

tion analysis and global activity understanding seems to be

tracking objects within and across camera views. Indeed,

most previous methods rely on either intra-camera (within

camera) tracking to detect entry and exit events for mod-

elling transition time distribution, or inter-camera (between

cameras) tracking for object / trajectory association (Zel-

niker et al. 2008; Makris et al. 2004; Wang et al. 2010).

These methods generally assume reliable object localisation

and detection as well as smooth object movement. However,

these assumptions are often invalid in real-world surveil-

lance settings featured with severe occlusions caused by ex-

cessive number of objects in the scene and very low tempo-

ral and spatial resolution 1. Particularly, in a typical public

scene as shown in Fig. 1(b), the sheer number of objects with

complex activities causes severe inter-object occlusions con-

tinuously, leading to temporal discontinuity of trajectories.

Tracking is further compounded by the typically low tem-

poral resolution of surveillance video, where large spatial

displacement is observed in moving objects between con-

secutive frames.

In this paper, we propose a novel approach to modelling

time delayed correlations among multi-camera activities with-

out relying on either intra-camera or inter-camera tracking.

Specifically, since a complex scene naturally consists of mul-

tiple local scene regions that encompass distinctive activ-

ities, each camera view is first decomposed automatically

into regions, across which different spatio-temporal activity

patterns are observed. A novel Cross Canonical Correlation

Analysis (xCCA) framework is then formulated to discover

and quantify correlation and temporal relationships of ar-

bitrary order among these multi-camera regional activities.

As opposed to object centred approaches, our xCCA learns

activity correlations by exploiting the underlying spatial and

temporal correlation of regional activities in a holistic man-

ner and avoids object tracking under challenging surveil-

lance conditions.

The proposed approach is employed to address three fun-

damental problems in multi-camera activity understanding:

(i) Estimate the spatial topology (i.e. between-camera spa-

tial relationships) and more importantly the temporal topol-

ogy of a camera network, that is, the temporal relation-

ships (e.g.the unknown delay time) between inter-correlated

partial observations taking place in different camera views.

(ii) Facilitate more robust and accurate person re-identification

among different camera views, by resolving ambiguities

and uncertainties that arise due to large and unknown

separation among cameras both spatially and temporally.

1 Many multi-camera surveillance systems record videos at less than

5 fps to optimise data bandwidth and storage space (Kruegle 2006;

Cohen et al. 2006).
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(iii) Interpret global activity, and perform video temporal

segmentation by linking visual evidences collected from

different camera views.

We demonstrate the effectiveness of the proposed approach

using 330 hours of videos captured at 0.7 fps from two busy

underground stations with eight and nine camera views re-

spectively, all of which feature crowded scene and complex

activities.

The rest of the paper is structured as follows: Section 2

reviews related work to highlight the contributions of this

study. The proposed framework is explained in Section 3.

Results are reported and discussed in Section 4. Finally, the

paper concludes with some suggestions for further investi-

gation in Section 5.

2 Previous Work

Much work on activity correlation modelling has been de-

voted to single camera scenario. In most cases, activity cor-

relations are modelled among limited number of individual

objects (Oliver et al. 2000; Du et al. 2007; Gong and Xiang

2003). More recently, Li et al. (2008) propose to model the

co-occurrence of activities observed in different regions of

a wide-area scene. Although promising results are reported,

these methods are not suitable for multiple camera scenarios

since the time delays between activities are ignored.

For multi-camera activity analysis, there have been a

few attempts, but only limited to modelling co-occurrence or

first-order temporal relationships between activities. Zhou

and Kimber (2006) model activities across views using a

Coupled Hidden Markov Model (CHMM), which can only

handle first-order dependencies without considering relation-

ships of arbitrary order. Wang et al. (2010) employ intra-

camera tracking to extract trajectories from each camera view

and group them into global activities using topic models

extended from the Latent Dirichlet Analysis (LDA) (Blei

et al. 2003), with a restriction that only co-occurrence rela-

tionships between activities within a fixed temporal thresh-

old can be modelled. In contrast to existing methods, the

xCCA framework proposed in this work is capable of cap-

turing correlation and temporal relationships of arbitrary or-

der without relying on object tracking. Moreover, our ap-

proach is able to cope with co-existence of large number of

objects both within and across camera views.

Apart from global activity analysis, considerable efforts

have been devoted to camera network topology inference

(Javed et al. 2003; Makris et al. 2004; Tieu et al. 2005)

and person re-identification (Javed et al. 2003, 2005; Gheis-

sari et al. 2006; Prosser et al. 2008). To infer the topology

of a camera network or re-identify a person over multiple

cameras, existing methods generally follow two approaches:

(i) matching individual object visual appearance or motion

trends such as movement speed; (ii) exploiting distribution

of transition times of entry and exit events.

The first approach, e.g. (Javed et al. 2003), relies on the

availability of reliable visual and motion features from target

to achieve inter-camera object association. In practice, this

approach suffers from significant feature variations across

camera views due to changes in illumination (both intra-

and inter-camera), camera orientation, and person appear-

ance caused by pose change (see Fig. 1(a) for example). Al-

though various strategies have been proposed (Javed et al.

2005; Gheissari et al. 2006; Gray and Tao 2008; Zheng et al.

2009) to adapt and rectify feature variation, object feature

matching remains a notoriously difficult problem under real-

world surveillance conditions. This is because that even if

feature variation can be rectified or reduced, reliable features

for matching may still not be available due to severe inter-

object occlusions, typical in a busy public space. In con-

trast, our approach circumvents unreliable feature match-

ing by inferring the spatial and temporal relationships be-

tween regions across camera views, which also provides an

important contextual cue in addition to visual appearance

for person association. Furthermore, most existing methods

perform supervised training by assuming known object cor-

respondences, which is difficult to establish automatically

and reliably. In comparison, our approach is unsupervised

without relying on any prior knowledge on object correspon-

dence.

The second approach, e.g.(Makris et al. 2004; Tieu et al.

2005), avoids explicit feature matching by modelling transi-

tion time distribution between entry and exit events detected

in different camera views. These methods are based on the

assumption that individual exit and entry events can be de-

tected by exploiting starting and ending points of object tra-

jectories. However, as we shall see in Sec. 4.4, object track-

ing in a busy public scene is extremely unreliable especially

when the spatial and temporal resolutions of the video are

low. Our approach overcomes this problem by discovering

and quantifying correlation and temporal relationships be-

tween activities in different camera views without relying on

either intra-camera or inter-camera tracking. It therefore can

be applied under the most challenging public scene viewing

conditions.

It is worth pointing out that van den Hengel et al. (2006)

also attempted to infer the camera topology without relying

on object tracking. Their method starts with full connectiv-

ity among camera views and gradually eliminates linkages

among image regions that exhibit simultaneous object occu-

pancy and vacancy. This method, however, only examines

static object co-occurrence over time without considering

the temporal relationships among multi-camera activities.

Importantly, it ignores possible connections between non-

overlapping views. It is thus limited to learning only the con-

nectivity among overlapping camera views. On the contrary,
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our approach takes temporal relationships among activities

into account. In addition, although we focus on disjoint cam-

eras in this study, the proposed approach can be readily used

for camera views with any degrees of overlapping.

In summary, the main novelties of the proposed approach

are two-fold:

(i) It is capable of discovering and quantifying the correla-

tion and temporal relationships of arbitrary order among

local activities across different camera views. To our best

knowledge, this study is the first attempt to model time

delayed activity correlations among multiple cameras.

(ii) It does not rely on either inter-camera or intra-camera

tracking. Therefore it is robust to occlusions and can be

applied to crowded scenes of low spatial and temporal

resolutions.

Compared to our earlier version of this work (Loy et al.

2009), there are three changes in methodology for address-

ing a number of key limitations of our CVPR approach that

prevent it from being scalable on more complicated and chal-

lenging multi-camera scenes. First, we formulate in this pa-

per a robust background model to cope with sudden changes

in global intensity level within camera views in surveillance

videos (Sec. 3.1). This results in more reliable features for

the proposed time delayed correlation analysis. Second, we

formulate a new topology inference approach that considers

both time delay and correlation strength (Sec. 3.3). Third,

we employ a more principled approach to compute objects’

spatio-temporal relationships for context-aware person re-

identification (Sec. 3.4). On experimental evaluation, a new

dataset is added to the one used in (Loy et al. 2009), which

was captured from a multi-camera site that exhibits more

complex behaviours and contains more diverse scenes. Our

experimental results suggested the performance of the ap-

proach formulated in this work is superior to that of the ap-

proach in (Loy et al. 2009).

3 Multi-Camera Activity Correlation Analysis

The key components of the proposed approach is illustrated

in Fig. 2. Given disjoint camera views in a camera network

(Fig. 2(a)), local spatio-temporal patterns are first extracted

and represented as time-series data from each camera view

(Fig. 2(b)). The patterns are then used as input to our activity-

based scene decomposition method to segment the scenes

into regions (Fig. 2(c)), from which the regional activity pat-

terns are extracted. Subsequently, the Cross Canonical Cor-

relation Analysis (xCCA) is performed to infer inter-region

time-delayed correlations (Fig. 2(d)). Regional activity cor-

relations are then discovered and quantified (Fig. 2(e)). We

refer the process of activity-based scene decomposition and

xCCA as training in this study. Finally the inferred regional

activity correlations are exploited for camera topology in-

ference, and used as contextual information for person re-

identification and global activity temporal segmentation

(Fig. 2(f–h)).

3.1 Scene Decomposition and Activity Representation

A complex public scene naturally consists of multiple local

regions, each of which encapsulates a unique set of activity

patterns correlated with each other either explicitly or im-

plicitly. Given a set of training video sequences, our goal

is to decompose M camera views into N regionsRRR accord-

ing to the spatial-temporal distribution of activity patterns,

whereRRR is given as

RRR={Rn|n = 1, . . . ,N} . (1)

Consequently, the m-th camera view in the network con-

tains Nm regions with Nm being determined automatically

and N = ∑
M
m=1 Nm.

Fig. 3 The figure depicts a frame with abrupt intensity level change

(a) compared to its background model (b). The ratios of RGB channels

between the extracted regions of (a) and (b) are 1.2380, 1.2829 and

1.3428 respectively.

Robust background modelling – Sudden and frequent in-

tensity changes in real-world surveillance videos may intro-

duce noise that affects the accuracy of time-delayed correla-

tion analysis. To address this problem, a robust background

modelling method is formulated 2. The changes in inten-

sity level are caused either by lighting condition changes

(e.g. moving clouds outdoor or flashing advertising boards

indoor) or camera response to different crowdedness in the

scene. In the latter case, auto gain and white balancing func-

tions of cameras yield different global intensity level on a

particular video frame when crowd or large objects are present

in the video. An example of the latter can be seen in Fig. 3

where drastically different global intensity level are observed

when an underground train platform changes from crowding

(Fig. 3(a)) to empty (Fig. 3(b)).

2 Matlab implementation of the proposed background subtrac-

tion method is available at http://www.eecs.qmul.ac.uk/~ccloy/

files/substractBackgroundMS.zip
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Fig. 2 A diagram illustrating our multi-camera time delayed activity correlation approach.

The key idea of our method is to adapt the background

image to the intensity level of current frame prior to back-

ground subtraction. In particular, a static background image

is first constructed by employing a method proposed by Rus-

sell and Gong (2006). We then compute pixel-level intensity

ratios g between all pixels of the stored background image

and the current frame. Subsequently, the background image

is adjusted by multiplying all its pixels with g. However, not

all the ratios reflect the true intensity level change as some of

them belong to foreground regions. To eliminate the effect

of incorrect ratios caused by foreground regions, a mean-

shift procedure (Fukunaga and Hostetler 1975) is performed

to find the stationary point of the distribution of g. In partic-

ular, the centre of a Gaussian kernel denoted by
{

c j

}

j=1,2,...
is iteratively moved from the current point to the new point

according to:

c j+1 =
∑

Npixel

i=1 gi exp
(

−
‖c j−gi‖

2

2h2

)

∑
Npixel

i=1 exp
(

−
‖c j−gi‖2

2h2

) , j = 1,2, . . . (2)

where Npixel is the number of pixels and the size of the Gaus-

sian kernel h is set to 1 in this study. To obtain the initial

point c1 of the kernel, we first perform a coarse background

subtraction between the stored background image and the

input image. The initial point is then computed as the mean

of the intensity ratios between all the non-foreground pixels.

The mean shift procedure terminates when the maximum it-

eration allowed is reached or

‖c j+1− c j‖< ε, (3)

where ε is set to a small value. The final centre of the ker-

nel gives the most likely intensity ratios that account for the

change of intensity level. These ratios are used to adjust the

original background image in an online manner and a fine

background subtraction is performed to obtain a foreground

mask that is least affected by abrupt changes of intensity

level.

Apart from implementing robust background modelling,

we also perform colour correction in YUV colour space by

blending the chrominancy components of previous and cur-

rent frames to reduce the chroma noise commonly found in

surveillance videos.

Discussion – Many previous work has been done in robust

background modelling. There are quite a few methods that

can handle gradual lighting changes but are still vulnera-

ble to sudden lighting changes (Stauffer and Grimson 2000;

Zivkovic and van der Heijden 2006; Friedman and Gold-

szmidt 1997). In particular, they are based on statiscal back-

ground modelling which are slow in model update, thus be-

ing less effective in handling rapid lighting changes. Re-

cently, a number of methods have been proposed to cope

with sudden lighting changes (Pilet et al. 2008; Sung et al.

2008; Xie et al. 2004). Our background subtraction method

is similar to Sung et al. (2008) but with a key difference
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on the intensity ratio estimation. In their approach, a set

of recent frames are kept to estimate a background model;

therefore g is estimated between the current frame and previ-

ous frame. However, given surveillance videos featured with

crowded scenes, it is hard to maintain a reliable background

model with limited number of recent frames. Therefore, we

choose to generate a single background image, and adjust

it based on g estimated between the current frame and the

background image itself.

Local block activity pattern representation – First, we

divide the image space of a camera view into equal-sized

blocks with 10×10 pixels each (Fig. 2(b)). Foreground pix-

els are then detected using the aforementioned background

subtraction method. The foreground pixels are categorised

as either static or moving via frame differencing (e.g.sitting

people are detected as static foreground whilst passing-by

people are detected as moving foreground). Activity patterns

of a block are then represented as a bivariate time-series

ub=(ub,1, . . . ,ub, t , . . . ,ub,T )

vb=(vb,1, . . . ,vb, t , . . . ,vb,T )
, (4)

where b representing the two-dimensional coordinates of a

block in the image space and T is the total number of frames

used in training, ub, t and vb, t are the percentage of static

and moving foreground pixels within the block at frame t

respectively. Note that T needs to be sufficiently large to

cover enough repetitions of activity patterns, depending on

the complexity of a scene.

The low spatial and temporal resolution of surveillance

footages has imposed great challenges to the selection of ap-

propriate features for local block activity pattern representa-

tion. As explained in Section 1, trajectory features (Hu et al.

2006b; Saleemi et al. 2009) are extreamely unreliable under

these restrictions. More sophisticated features such as opti-

cal flow (Wang et al. 2009; Yang et al. 2009) are found to be

unstable too. Importantly, optical flow computation assumes

small object displacement and constant brightness for the

computation of velocity field; both assumptions are invalid

for videos with very low frame rate and poor image quality.

Similarly, spatio-temporal gradients proposed by Kratz and

Nishino (2009) would fail due to motion discontinuities in

low-frame rate videos.

Consequently ub and vb are chosen as they are the only

features that can be extracted reliably given videos of low

spatial and temporal resolution such as those used in our ex-

periments (Section 4). Despite their simplicity as time-series

features ub and vb are found to be effective in capturing the

temporal characteristics of activity patterns including tem-

poral persistence of different patterns and their temporal or-

der.

Activity-based scene decomposition – After feature extrac-

tion, we group blocks into regions according to the similar-

ity of local spatio-temporal activity patterns represented as

ub and vb. Specifically, two blocks are considered similar

and grouped together if they are closed to each other spa-

tially and exhibit high correlations in both static and moving

foreground activities over time. The grouping process be-

gins with computing correlation distances among local ac-

tivity patterns of each pair of blocks. A correlation distance

is defined as a dissimilarity metric derived from Pearson’s

correlation coefficient (Liao 2005), given as

r = 1−|r|. (5)

In particular, r = 0 if two blocks have strongly correlated

local activity patterns, or r = 1 otherwise. Subsequently, we

construct an affinity matrix A =
{

Ai j

}

∈ R
B×B, where B is

the total number of blocks in the camera view and Ai j is

defined as:

Ai j =



















exp

(

−
(ru

i j)
2

2σu
i σu

j

)

exp

(

−
(rv

i j)
2

2σv
i σv

j

)

exp
(

−
‖bi−b j‖

2

2σ2
b

)

if ‖bi−b j‖ ≤ R and i 6= j

0 otherwise

,

(6)

where the correlation distances of ub and vb between block

i and block j are given by ru
i j and rv

i j respectively, whilst

[σu
i ,σ

u
j ] and [σv

i ,σ
v
j ] are the respective correlation scaling

factors for ru
i j and rv

i j. The correlation scaling factors are de-

fined as the mean correlation distance between the current

block and all blocks within a radius R. The coordinates of

the two blocks are denoted as bi and b j. Similar to the cor-

relation scaling factors, the spatial scaling factor σb is de-

fined as the mean spatial distance between the current block

and all blocks within the radius R. The affinity matrix is then

normalised according to

A = L−
1
2 AL−

1
2 , (7)

where L is a diagonal matrix and Lii = ∑
B
j=1 Ai j. Upon ob-

taining the normalised affinity matrix A, we employed spec-

tral clustering method proposed by Zelnik-Manor and Per-

ona (2004) to decompose each camera view into regions

with the optimal number of regions being determined au-

tomatically.

In the computation of the affinity matrix, we follow Li

et al. (2008) to compute similarity within a fixed radius R.

This strategy was shown to prevent under-fitting problem

during decomposition in comparison to the local scaling strat-

egy proposed by Zelnik-Manor and Perona (2004). Note that

similarity in the Gaussian kernel affinity matrix is governed

by the selection of scaling factors (Zelnik-Manor and Perona

2004; Ng et al. 2001). In this study, the scaling factors are

functions of the radius R; the scene decomposition results
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are therefore governed by the selection of R. From our ex-

periments, we observed that the cluster formations are gen-

erally stable when R is set within the range of 20-30. Conse-

quently, we selected R = 20 in this study. Figure 2(c) shows

some examples of scene decomposition. It is evident that

each camera view is decomposed into semantically mean-

ingful regions such as train track areas and people sitting

areas.

Our scene decomposition method is similar to that of Li

et al. (2008) but with a noticeable modification on how local

activities are represented. Specifically, in our method local

activities are represented as time series and correlation dis-

tance between them are used as the dissimilarity measure. In

comparison, a Bag of Words representation is adopted by Li

et al. (2008), which ignores the temporal order information

of a local activity and is thus less discriminative than our

representation.

Regional activity representation – Given the scene decom-

position, regional activity patterns of a camera view are formed

based on the local block activity patterns. In particular, the

regional activity patterns at regionRn is represented as

ûn =
1
|Rn|

∑b∈Rn
ub

v̂n =
1
|Rn|

∑b∈Rn
vb

, (8)

where |Rn| is the number of blocks belong to regionRn. To

facilitate a more accurate time delayed correlation analysis,

we remove any region with half of its blocks exhibiting low

activity. In this study, a low-activity block is defined as a

block with activity patterns having a standard deviation that

is less than three.

3.2 Cross Canonical Correlation Analysis

For any pair of regions in a camera network, two questions

are to be answered: (i) are activities in these regions corre-

lated? (ii) if yes, how strong are the correlations and what

are the temporal relationships among them? It is non-trivial

to discover and quantify correlations and temporal relation-

ships between cameras. Different viewing angles of cameras

may introduce pattern variations across camera views. Im-

portantly, correlations between regional activities across dis-

joint camera views are complex in that there is often an un-

known temporal gap/delay between the times when a caus-

ing activity in one region taking place and the correlated/caused

activity in the other region being observed.

To this end, we wish to search for linear combinations 3

of the regional activities (represented as time-series) having

3 Recall that activity patterns over all regions are represented by the

percentage of static and moving foreground pixels (Eqn. (8)), which

reflect the crowd densities in the regions. If two regions are connected

with correlated activity patterns, we expect to observe similar changes

in crowd density across them after a certain time delay. It is therefore

reasonable to assume that the relationships of the features extracted

from the two regions to be linear.

maximal correlation and model the temporal gap as a tem-

poral dependency of arbitrary order between the two time-

series. Consequently, we formulate a new Cross Canonical

Correlation Analysis (xCCA) to measure the correlation of

two regional activities as a function of an unknown time lag

τ applied to one of the two regional activity time-series.

Our approach differs from Canonical Correlation Anal-

ysis (CCA) (Hotelling 1936) in that CCA can only measure

how strong two vector variables are correlated in a concur-

rent or zero-order sense. The proposed xCCA extends CCA

to measure correlations beyond zero order by including ad-

ditional steps similar in nature to the standard Cross Corre-

lation Analysis (xCA) (Kendall and Ord 1990). This princi-

pally involves shifting of one time series and computes its

canonical correlation with the other. An example is shown

in Fig. 2(d).

Formally, let xi(t) and x j(t) denote the two regional ac-

tivity time series observed in the ith and jth regions re-

spectively. Note that xi(t) and x j(t) are time-series of N f -

dimensional variables. In our case, N f = 2 since we extract

two features û and v̂ from each region. For clarity in the fol-

lowing equations, we denote y(t) = x j(t + τ). We also omit

the symbol t for conciseness, e.g. time series xi(t) becomes

xi and y(t) becomes y.

At each time delay index τ (or each shifting step), xCCA

finds two sets of optimal basis vectors wxi
and wy for xi and

y such that correlation of the projections of them onto the ba-

sis vectors are mutually maximised. Let linear combinations

of canonical variates be xi = wT

xi
xi and y = wT

y y, canonical

correlation ρρρxi,x j
(τ) is defined as:

ρρρxi,x j
(τ) =

E[xiy]
√

E[x2
i ]E[y

2]

=
E[wT

xi
xiy

Twy]
√

E[wT
xi

xixi
Twxi

]
√

E[wT
y yyTwy]

=
wT

xi
Cxiywy

√

wT
xi

Cxixi
wxi

√

wT
y Cyywy

, (9)

where Cxixi
and Cyy are within-set covariance matrices of

xi and y, respectively, whilst Cxiy is between-set covariance

matrix.

The maximisation of ρρρxi,x j
(τ) at each time delay index

τ can be solved by setting the derivatives in Eqn. (9) to zero,

yielding the following eigenvalue equations:

{

C−1
xixi

CxiyC−1
yy Cyxi

wxi
= ρρρ2

xi,x j
(τ)wxi

C−1
yy Cyxi

C−1
xixi

Cxiywy = ρρρ2
xi,x j

(τ)wy
, (10)

where the eigenvalues ρρρ2
xi,x j

(τ) are the square canonical cor-

relations and the eigen vectors wxi
and wy are the basis vec-

tors. We only need to solve one of the eigenvalue equations
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since the equations are related by:
{

Cxiywy = ρρρxi,x j
(τ)λxi

Cxixi
wxi

Cyxi
wxi

= ρρρxi,x j
(τ)λyCyywy

, (11)

where

λxi
= λ−1

y =

√

wT
y Cyywy

wT
xi

Cxixi
wxi

. (12)

The time delay that maximises the canonical correlation

between xi(t) and x j(t) is computed as:

τ̂xi,x j
= argmax

τ

∑
Γ ρρρxi,x j

(τ)

Γ
, (13)

where Γ = min(rank(xi), rank(x j)). Note that we average

the canonical correlation function with Γ to obtain a single

correlation value at each time delay index. The associated

maximum canonical correlation is then obtained by locating

the peak value in the averaged canonical correlation function

as:

ρ̂xi,x j
=

∑
Γ ρρρxi,x j

(

τ̂xi,x j

)

Γ
. (14)

We compute the maximum canonical correlation and the as-

sociated time delay for each pair of regional activity patterns

to construct a regional activity affinity matrix

P =
{

Pi j

}

∈ R
N×N , Pi j = ρ̂xix j

, (15)

and a time delay matrix

D =
{

Di j

}

∈ R
N×N , Di j = τ̂xix j

. (16)

Note that 0 ≤ ρ̂xi,x j
≤ 1 with equality to 1 if, and only if

the two regional time series are identical. If τ = 0, xCCA is

equivalent to performing CCA on xi(t) and x j(t).

Discussion – Our xCCA compares favourably to alterna-

tive correlation analysis methods. One alternative approach

is to represent each region as a node in a Bayesian network

and learn the optimal structure of the network. This can be

achieved by performing search over the space of candidate

network structures, using methods such as Markov Chain

Monte Carlo Bayesian network structure learning (MCMC-

BNSL) (Neapolitan 2003). The strength of dependency be-

tween two regions can then be represented by the frequency

of an edge being selected from the sampled structures. How-

ever, the learned structure can only reveal zero-order tempo-

ral dependency, and thus cannot cope with more complex

(and higher order) correlations that are common in multi-

camera scenes. Another alternative is the standard Cross Cor-

relation Analysis (xCA). Compared to xCA, xCCA is more

capable of capturing the underlying mutual patterns of two

regional activity time series. This is because by projecting

them into an optimal subspace, it minimises the effect of

pattern variations introduced by different camera viewing

angles and the temporal delays between correlated activities

across camera views.

3.3 Topology Inference

With the regional activity correlation of arbitary order be-

ing discovered and quantified (Eqn. (15) and (16)), we wish

to infer a camera topology. It is observed that considerable

high correlations can be found between some region pairs

even though they are not close to each other both spatially

and temporally. This could be caused by noise or constant

crowdedness in both regions. As a result, when shifting is

performed to compute the correlation function of two re-

gion time-series, the algorithm may locate a ‘spurious’ peak

that does not reflect the true correlation among their ac-

tivity patterns. Fortunately, those ‘spurious’ peaks are nor-

mally found at a point where the time delay has a large

value. Therefore, we exploit both time delay and correlation

strength for topology inference. Specifically, two cameras

will be connected in the inferred topology if they contain

connected regions which are defined as those with high cor-

relation value (Eqn. (14)) and short time delay (Eqn. (13)).

First, we compute a region connectivity matrixΨΨΨ =
{

Ψi j

}

∈

R
N×N , which represents how likely each pair of regions in

the camera network are connected, or the strength of their

connectivity. More specifically, each element in the region

connectivity matrix is computed as

Ψi j = ρ̂xi,x j

(

1−|τ̂xi,x j
|
)

, (17)

where ρ̂xi,x j
is obtained from normalised regional activity

affinity matrix P, so that it has a value range of [0,1]. Whilst

|τ̂xi,x j
| is obtained by normalising the absolute values of the

elements of the time delay matrix D. These two normalisa-

tions ensure that we have 0≤Ψi j ≤ 1. The higher the value

of Ψi j, the stronger the connectivity between a region pair .

Once we have obtained the region connectivity matrix,

the camera topology, represented as a camera connectivity

matrix ΦΦΦ =
{

Φi j

}

∈ R
M×M , can be inferred. Specifically

the strength of the connectivity between the ith and jth cam-

era nodes is obtained by averaging the regional activity con-

nectivity strength (Eqn. (17)) between each pair of regions

across the two camera views. In this study, in order to reduce

the influence of possible noise and redundant connectivities

in ΨΨΨ , we first search for the strongest connectivity between

a region in the ith camera view with all regions in the jth

camera view. This searching step is repeated for all regions

in the ith camera view. Subsequently, the top Ne connectiv-

ities are averaged to obtain Φi j, with Ne being set to half of

the number of regions in the ith camera view. Finally ΦΦΦ is

normalised so that its elements have a value range of [0,1].

Two cameras are then deemed as being connected if the cor-

responding Φi j value is greater than the mean value of all

the elements of ΦΦΦ .
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3.4 Context-aware Person Re-identification

The goal of person re-identification is to search for a given

individual who disappeared in one camera view over other

camera views. Here we describe how the learned time-delayed

activity correlations can be employed as contextual informa-

tion to reduce the search space as well as to resolve ambigu-

ities arising from:

(i) Similar visual features presented by different people.

(ii) Feature variations caused by different poses, camera view-

ing angles and illumination changes.

Simple colour histogram feature is used for discriminat-

ing an individual against others. Though more sophisticated

features are available (Gheissari et al. 2006; Gray and Tao

2008), the use of simple features provides a baseline for

evaluating to what extent the time delayed correlations could

improve the person re-identification accuracy. Specifically,

given the bounding boxes of two people a and b observed

in different camera views, we first normalise the bounding

boxes to equal size. We then segment each normalised boxes

into Nh horizontal strips of equal height, from which colour

histograms are computed and concatenated for representing

the visual appearances of a and b.

The similarity between the two concatenated colour his-

tograms Ha and Hb of a and b is measured using Bhat-

tacharyya score (Bhattacharyya 1943; Comaniciu et al. 2000)

as follows:

S
a,b
bha =

Nbin

∑
i=1

√

Ha
i Hb

i , (18)

where Nbin represents the number of bins. Each histogram

bin is normalised using the total number of pixels in the

normalised image, so that ∑
Nbin
i=1 Ha

i = 1 and ∑
Nbin
i=1 Hb

i = 1.

Note that the Bhattacharyya score is close to zero (mini-

mum value is 0) if Ha and Hb are very different, or have

a maximum value of 1 if two histograms are identical. The

Bhattacharyya score is first computed for each colour chan-

nel separately. The overall Bhattacharyya score S
a,b
bha is then

obtained by multiplying the scores S
a,b
bha computed over all

channels.

To incorporate the learned activity correlations and time

delays into the final score for person re-identification, we

first determine the regions (see Sec. 3.1) occupied by person

a and b and the associated inter-region correlation and time

delay. In particular, if a person’s bounding box overlaps Nr

regions in the image space, the occupancy fractions of in-

dividual regions within the bounding box are computed and

represented as a set of weights:

µµµ ={µi|i = 1, . . . ,Nr} , (19)

where ∑
Nr
i=1 µi = 1. The weights are used to calculate the

correlation between regions occupied by person a and b as

follows:

ρ̂a,b =
Na

r

∑
i=1

µa
i





Nb
r

∑
j=1

µb
j ρ̂xi,x j



 , (20)

where ρ̂xi,x j
is the maximum cross canonical correlation com-

puted using Eqn. (14). The corresponding time delay is given

as:

τ̂a,b =
Na

r

∑
i=1

µa
i





Nb
r

∑
j=1

µb
j τ̂xi,x j



 , (21)

where τ̂xi,x j
is computed using Eqn. (13). The overall score

is computed as follows:

S
a,b
overall =

{

S
a,b
bha ρ̂a,b if 0 < t

a,b
gap < ατ̂a,b

0 otherwise
, (22)

where t
a,b
gap is the time gap of observing the two people in the

two camera views, whilst α is a factor that determines the

maximum allowable transition time between cameras during

person matching.

3.5 Global Activity Interpretation

Global activities defined by correlated activities across mul-

tiple camera views should be modelled collectively. This is

because by utilising visual evidences collected from differ-

ent views, global activity modelling is more robust to noise

and visual ambiguities than modelling activities separately

within individual camera views. Note that the regional activ-

ity affinity matrix P (Eqn. (15)) is only concerned with the

correlations of regional activities. It does not reveal either

the contributions of these regional activities to the global

activities or the temporal dynamics of the global activities.

Fig. 4 Hidden Markov Model with two time slices unrolled. Observa-

tion nodes are shown as shaded circles and hidden nodes are shown as

clear squares.

A complex camera network can capture many activities

occurring simultaneously. However, not all the activities are

correlated and they should be excluded during global activ-

ity modelling. In this study, the underlying global activities

are discovered and modelled by taking the following steps:

(i) The same spectral clustering algorithm used in Sec. 3.1

is employed to group regional activities using the re-

gional activity affinity matrix P (Eqn. (15)) as an input

affinity matrix.
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(ii) The clusters returned by the spectral clustering algo-

rithm are examined for discovering highly-correlated global

activities. Specifically, those clusters that consist of cross-

camera regions with the highest mean cross canonical

correlations are selected.

(iii) Activity patterns in one of the χ selected regions are set

as a reference point to temporally align activity patterns

of other regions in accordance to the respective temporal

offsets τ̂xi,x j
computed using Eqn. (13).

(iv) The aligned regional activity patterns, each represented

as a two-dimensional time series (i.e. û and v̂), are con-

catenated together to form global activity patterns, zt =

û1,t ||v̂1,t || . . . ||û
′
χ,t ||v̂

′
χ,t , with the prime symbol indicat-

ing an aligned time-series according to the temporal off-

set. The global activity patterns, zt is then used as inputs

to train an Hidden Markov Model (HMM) to model the

temporal dynamics of the global activity.

(v) The HMM structure is shown in Fig. 4. It is an ergodic

(fully-connected) model with Qt being discrete random

variable, Qt ∈
{

qi|i = 1, . . . ,K
}

. We assume that the model

is first-order Markov, i.e.p(Qt |Q1:t−1)= p(Qt |Qt−1). We

also assume that the observations are conditionally first-

order Markov, i.e. p(zt |Qt ,z1:t−1) = p(zt |Qt).

(vi) Automatic model selection is performed based on the

Bayesian Information Criterion (BIC) score to find the

number of hidden states K in the model. For model pa-

rameter estimation, we first group the aligned regional

activity patterns at different time instances using K-means

clustering algorithm into K groups. The clustering re-

sults, i.e.the means and covariances of individual groups

are used to initialise a K-hidden states HMM. The model

parameters are then estimated using the Baum-Welch al-

gorithm (Baum et al. 1970).

The learned HMM for each global activity can be used for

real-time activity-based temporal segmentation. The objec-

tive is to segment unseen video streams into activity phases

based on ‘what is happening’ not only in a particular view

but also in other views with highly-correlated activities. These

activity phases are obtained by inferring the hidden states Qt

at each time instance using online filtering method (Murphy

2002). In particular, given zt observed as a continuous data

stream, the probability of a particular hidden state p(Qt |z1:t)

is computed as a function of current input zt and prior belief

state p(Qt−1|z1:t−1):

p(Qt |z1:t) ∝ p(zt |Qt ,z1:t−1)p(Qt |z1:t−1)

= p(zt |Qt)[∑Qt−1
p(Qt |Qt−1)p(Qt−1|z1:t−1)].

(23)

Based on the Markovian assumption, we can use p(zt |Qt) to

replace p(zt |Qt ,z1:t−1). Similarly, p(Qt |z1:t−1) can be com-

puted from the prior belief state under the Markovian as-

sumption. To infer the activity phase Q∗t , the probabilities

p(Qt = qi|z1:t) are first computed using Eqn. (23). The most

likely hidden state is then determined by choosing the hid-

den state that yields the highest probability:

Q∗t = argmax
qi

p(Qt = qi|z1:t). (24)

4 Experimental Results

4.1 Datasets

The two datasets employed in our experiments contain syn-

chronised and static views, captured at a frame rate of 0.7

fps from uncalibrated and disjoint cameras installed at two

busy underground stations. Each image frame has a size of

320×230 pixels.

Station A dataset – A snapshot of each of the 8 camera

views and the camera topology of this station are depicted in

Fig. 5. The two train platforms of this station are covered by

three cameras each (Cam 1-6). The rest two cameras (Cam

7-8) monitor a connected concourse, which is far away from

the two platforms. The video from each camera lasts over

19 hours from 5:28am to 12:38am the next day, giving a

total of 153 hours of video footage. Typically, when a train

arrives at one of the platform, passengers on the train get

off and leave the platform whilst passengers waiting on the

platform get into the train. Nonetheless, it is also common

that some passengers remain staying at the platform to wait

for a later train to a different destination.

Station B dataset – The camera topology of this station is

shown in Fig. 6, alongside with sample images of 9 camera

views. The station has a ticket hall and a concourse lead-

ing to two train platforms via escalators. Three cameras are

placed in a ticket hall and two cameras are positioned to

monitor the escalator areas. Both train platforms are cov-

ered by two cameras each. The video from each camera lasts

around 20 hours from 5:42am to 01:19am the next day, giv-

ing a total of 177 hours of video footage. Typically, passen-

gers enter from the main entrance, walk through the ticket

hall or queue up for tickets (Cam 1), enter the concourse

through the ticket barriers (Cam 2, 3), take the escalators

(Cam 4, 5), and enter one of the platforms. The opposite

route is taken if they are leaving the station. Apart from the

two platforms in Cam 6-7 and Cam 8-9, the passengers may

also proceed from the concourse to other platforms (not vis-

ible in the camera views) without taking the escalators. In

addition, after getting off a train they may also go to a dif-

ferent platform without leaving the station.

The two datasets employed in our experiments are dif-

ferent in that Station A dataset has a larger time gaps be-

tween cameras, thus it is more challenging for the person

re-identification task. Whilst Station B dataset features more

diverse scenes and complex activities, hence it is more ideal
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Fig. 5 The station layout and camera topology of Station A dataset. Entry and exit points are highlighted in red bars.

Fig. 6 The station layout and camera topology of Station B dataset. Entry and exit points are highlighted in red bars.

for experiments in topology inference. In general, both datasets

are difficult in several aspects:

(i) Complexity and diversity of the scenes. Activities ob-

served in the scenes take place at ticket hall, concourse,

train platforms and escalators, which are thus very dif-

ferent in nature.

(ii) Low video temporal and spatial resolution.

(iii) The lighting conditions are very different across cam-

era views.

(iv) Heavy inter-object occlusions due to enormous number

of objects in the scene especially during peak hours.

(v) Complex crowd dynamics, e.g. passengers may appear

in a group or individually, remain stationary at any point

of the scenes, or not get on an arrived train.

(vi) Only limited areas of the two large underground sta-

tions are covered by the cameras. In particular, there are

multiple entry and exit points that are not visible in the

camera views. This increases the uncertainties in the in-

terpretation of the observed activities.

4.2 Background Subtraction

A comparison between the proposed mean-shift based back-

ground subtraction method and the frame differencing based

method in (Loy et al. 2009) was carried out. Some qualita-

tive results are shown in Fig. 7. As can be seen, foreground

masks yielded by the proposed method is noticeably better.

Apart from qualitative evaluation, we also performed quan-

titative evaluation on both methods on topology inference

task. The results are reported in Section 4.4.

4.3 Activity-based Scene Decomposition

We used 5000 frames (≈ 2-hour in length) from each camera

view for activity-based scene decomposition. In particular,

the eight camera views from Station A dataset were auto-

matically decomposed into 62 regions (Fig. 8). Whilst the

nine camera views from Station B dataset were decomposed

into 96 regions (Fig. 9). As can be seen from Fig. 8 and

Fig. 9, the camera views were decomposed automatically

into semantically meaningful regions in spite of the heavy

inter-object occlusions and low temporal resolution. For in-

stance, the areas corresponding to the train tracks and plat-

forms formed distinctive regions. The sitting areas (e.g. re-

gions 3 and 7 of Station A dataset, regions 80 and 86 of

Station B dataset) were also segmented from areas where

people standing or walking. Another example is the differ-

ent escalators exits (regions 40, 43, 46) in Station B dataset,

which were clearly decomposed into different regions in ac-

cordance to the object dynamics.

We performed both qualitative and quantitative compar-

isons between scene decomposition method introduced by Li
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(a)

(b)

(c)

(d)

(e)

Fig. 7 The figure shows background models (the second column) and

foreground masks (the third column) yielded by frame differencing

method without background adjustment (the first row) and our ap-

proach (the second row) on frames with abrupt global intensity level

change (the first column).

et al. (2008) and our method. The two methods differ mainly

in their feature representations, i.e. time-series representa-

tion in our method and Bag of Words representation in that

of Li et al. (2008).

(i) Qualitative result: we found that our method yielded more

meaningful region boundaries. Some results are shown

in Fig. 10. As can be seen from most of the camera

views depicted in column (a) of Fig. 10, the train track

regions were clearly separated from the platform regions

using the time-series representation. In contrast, some

train track areas and platforms were segmented as a sin-

gle region using Bag of Words representation (column

(b) in Fig. 10).

(ii) Quantitative result: It is difficult to provide quantitative

result on activity-based scene decomposition as the cor-

rect region segmentation is subjective, especially when

the segmentation is not based on visual information but

activity patterns observed over time. Therefore, we per-

formed quantitative evaluation on a synthetic dataset, in

which the segmentation ground truth is known. In the

dataset, all blocks (10× 10 pixels each) within the same

region encompassed similar time-series patterns, whilst

blocks located in different regions contained different

time-series patterns. All time series had a length of 5000

and were corrupted by Gaussian noise. We measured

the decomposition accuracy based on the agreement be-

tween our segmentation and the segmentation ground

truth. As can be seen from Fig. 11, our time-series repre-

sentation yielded higher accuracy, 99.73% compared to

83.83% obtained by using Bag of Words representation

proposed by Li et al. (2008).

As we explained in Sec. 3.1, better performance is ob-

tained because our time-series activity representation cap-

tures the temporal dynamics of activity while the Bag of

Words representation utilised by Li et al. (2008) ignores the

temporal order of the activity occurrences.

(a) Cam 1 (b) Cam 2 (c) Cam 3

(d) Cam 4 (e) Cam 5 (f) Cam 6

(g) Cam 7 (h) Cam 8

Fig. 8 Station A dataset: activity-based scene decomposition results.
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(a) Cam 1 (b) Cam 2 (c) Cam 3

(d) Cam 4 (e) Cam 5 (f) Cam 6

(g) Cam 7 (h) Cam 8 (i) Cam 9

Fig. 9 Station B dataset: activity-based scene decomposition results.

(a) (b)

Fig. 10 Better scene decomposition result (a) was obtained using our

time-series activity representation and correlation based distance met-

ric, as compared to the result (b) obtained using Bag of Words repre-

sentation (Li et al. 2008).

4.4 Activity Correlation Analysis

Discovering and quantifying regional activity correlation

– The proposed xCCA was compared with xCA and MCMC-

BNSL for learning regional activity correlations. The re-

gional activity affinity matrices P (Eqn. (15)) (normalised

to have a value range of [0,1]) and the time delay matrices

D (Eqn. (16)) yielded by different methods for Station A

and Station B datasets are shown in Fig. 12 and Fig. 13 re-

(a) Ground truth (b) Time-series (c) Bag of Words

Fig. 11 Quantitative comparison between our time-series representa-

tion (decomposition accuracy = 99.73%) against Bag of Words rep-

resentation (Li et al. 2008) (decomposition accuracy = 83.83%) on a

synthetic dataset.

spectively. Note that time delay matrix is not available for

MCMC-BNSL since it can only discover zero-order tempo-

ral dependency between regional activities.

It can be seen from Fig. 12 and 13 that all methods

are able to discover high correlations and relatively shorter

time delays (except MCMC-BNSL) between regions from

the same camera views (see the block structure along the

diagonals of the P matrices). Importantly, a number of inter-

esting cross-camera correlations were discovered and quan-

tified accurately by xCCA. For instance, in Station B dataset,

high correlation value (see Fig. 13(a)) with a time delay of

9 frames or 13 seconds (see Fig. 13(b)) are discovered by

xCCA between region 46 (Cam 4) and region 51 (Cam 5).

This corresponds to the frequently occurred inter-camera ac-

tivity of passengers taking the upward escalator (with part of

the escalator invisible from the view), and leaving from the

escalator exit (see Fig. 1(a)). In comparison, although xCA

can also learn these correlations, it tends to ‘over-correlate’

regions, i.e. detect correlations that do not exist (e.g. region

pairs 3–91 and 18–48). In contrast, MCMC-BNSL revealed

few and also incorrect correlations (e.g. region pairs 13–48

and 9–91) with a lot of miss-detections (e.g.region pairs 46–

51 and 40–55 which correspond to passenger getting upward

and downwards using the escalators respectively).

Camera topology inference – Given the regional activity

affinity matrices and time delay matrices yielded by differ-

ent methods, we generated the camera topologies ΦΦΦ by fol-

lowing the steps described in Sec. 3.3. The camera topolo-

gies for both Station A and Station B dataset are shown in

Fig. 14 and Fig. 15 respectively. The inferred topologies are

compared with the actual topology obtained manually and

the numbers of missing edges (M) and redundant edges (R)

are also shown in the two figures.

For both datasets, we observe that xCCA yielded the

closest topology to the actual one based on the M and R

metrics. It is not surprising to see that our xCCA outper-

formed MCMC-BNSL significantly. As we discussed ear-

lier, the learned structure using MCMC-BNSL can only re-

veal zero-order temporal dependencies, i.e. co-occurrence

relationships, between activities. Thus it cannot cope with

more complex time delayed correlations that are common in

multi-camera scenes. As expected, xCA yielded a number

of redundant edges in both datasets. The better performance
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(a) xCCA – P (b) xCCA – D

(c) xCA – P (d) xCA – D

(e) MCMC-BNSL – P

Fig. 12 Station A dataset: regional activity affinity matrices P (nor-

malised to have a value range of [0,1]) and the associated time delay

matrices D obtained using xCCA, xCA and MCMC Bayesian network

structure learning.

of xCCA compared to xCA is due to its ability in captur-

ing the underlying mutual patterns of two regional activity

time series by projecting them onto an optimal subspace.

This is critical for analysing a busy public space such as

an underground station where significant variations exist for

correlated activities in different views caused by different

camera view angles and uncertainties on activity time de-

lays between views.

Let us discuss those missing and redundant edges in the

topologies. For Station A dataset, all methods except xCA

(which tends to ‘over-correlate’) failed to infer the connec-

tion between Cam 7 and Cam 8 because the area in Cam 8

adjacent to Cam 7 is too far away from the camera (at the

end of the concourse). In addition, there are four entry/exit

points in the field of view of Cam 7 leading to spaces not

covered by Cam 8 (see Fig. 5). This weakened the corre-

lation between these two camera views and explains why

the edge was miss-detected. Similarly, all methods except

xCA failed to infer the connection between Cam 3 and 4

in Station B data as the connection point is too far away

from the field of view as well as the existence of multiple

entry/exit points. All methods inferred additional edges for

camera pairs 1-3 and 4-6 in Station A dataset. Again this is

not unexpected. Specifically, although they are not directly

adjacent to each other (e.g.as shown in Fig. 5, Cam 1 is ad-

(a) xCCA – P (b) xCCA – D

(c) xCA – P (d) xCA – D

(e) MCMC-BNSL – P

Fig. 13 Station B dataset: regional activity affinity matrices P (nor-

malised to have a value range of [0,1]) and the associated time delay

matrices D obtained using xCCA, xCA and MCMC Bayesian network

structure learning.

(a) Actual (b) xCCA (c) xCA (d) MCMC (e) Full Frame

Fig. 14 Station A dataset: xCCA yielded the closest topology to the

actual one as compared to other methods. M = missing edges, R =

redundant edges.

jacent to Cam 2 which is then next to Cam 3), they cover the

same platforms therefore sharing a number of common ac-

tivities which are highly correlated, e.g.the arrival/departure

of trains, passenger getting on/off trains.

To demonstrate the importance of activity-based scene

decomposition on topology inference, we also performed

xCCA without scene decomposition, i.e.the activities within

each camera view as a whole are correlated with those in

other camera views to infer the camera topology. The re-

sults are shown in Fig. 14(e) and Fig. 15(e) which suggest

that without scene decomposition, even the proposed xCCA

would not be able to learned the correct camera topology.
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(a) Actual (b) xCCA (c) xCA

(d) MCMC (e) Full Frame

Fig. 15 Station B dataset: xCCA yielded the closest topology to the

actual one as compared to other methods. M = missing edges, R =

redundant edges.

(a) (b) (c)

Fig. 16 Camera topology inferred on station B dataset (a) without ro-

bust background subtraction + using correlation alone, (b) without ro-

bust background subtraction + using both correlation and time delay

and (c) with robust background subtraction + using correlation alone.

Comparison with method proposed in (Loy et al. 2009)

– In our previous work (Loy et al. 2009), a naive back-

ground subtraction method based on frame differencing is

employed. In addition, camera topology is inferred solely

based on correlation strength. Experiments were conducted

on Station B dataset to compare the approach reported in (Loy

et al. 2009) and the new method proposed in this study on

topology inference. The results are shown in Fig. 16.

As can be seen from Fig. 16(a), poor topology was in-

ferred with naive background subtraction method and based

only on correlation strength (method in (Loy et al. 2009)). In

contrast, as shown in Fig. 15(b), camera topology inferred

using our method produces fewer missing and redundant

edges.

Even if we exploited both correlation and time delay,

topology inferred with naive background subtraction method

still consists of a number of missing and redundant edges

(Fig. 16(b)). On the other hand, if we employed robust back-

ground subtraction method, poor topology was still obtained

when the topology was inferred based solely on correlation

strength (Fig. 16(c)). These results demonstrate that robust

background modelling as well as the use of both correlation

strength and time delay play important roles in making the

proposed method scalable to challenging and complicated

multi-camera scenes such as the one in the Station B dataset.

(a) Cam 5 (b) Cam 4

(c) Exit/entry transition time distribution

Fig. 17 (a) Passengers leave the field of view of Cam 5 from a zone

marked with ’Exit’ and (b) enter Cam 4 from a zone marked with ’En-

trance’. (c) The exit/entry transition time distribution for selected pairs

of zones obtained using tracking-based method proposed by Makris

et al. (2004). Dotted lines labelled as [i] at 9 frames and [ii] at 25 frames

represent the time delays between the selected pairs of zones estimated

using our method and the tracking-based method respectively. The av-

erage time delay obtained from manual observations is 9.12 frames.

Comparison with tracking-based method – To highlight

the inadequacy of tracking-based topology inference approach,

we compared our results with a method proposed by Makris

et al. (2004). In particular, tracking was performed on Cam

4 and Cam 5 of Station A dataset using a state of the art

multi-object tracker (Chen et al. 2005). The starting and

ending points of individual trajectories were clustered using

Gaussian Mixture Model (GMM) to automatically locate the

entry and exit zones, as shown in Fig. 17(a-b). Two entry

and exit zones that correspond to the upward escalator and

exit were selected and the corresponding exit/entry transi-

tion time distribution was plotted in Fig. 17(c). A peak in the

transition time distribution at 25 frames suggests the exis-

tence of inter-zone connection. To verify this result, we man-

ually recorded the amount of time taken by 50 objects pass-

ing across Cam 4 and Cam 5. It is observed that on average,

an object took 9.12 frames to pass through the two zones.

This demonstrates that the tracking-based method failed to

estimate the correct transition time. The failure of the tracking-

based method is mainly due to the difficulty in performing

object tracking in low-frame rate video featured with heavy

occlusion. The resultant fragmentation of object trajecto-

ries produced unreliable trajectory starting points and end-

ing points, leading to inaccurate estimation of the entry/exit

zones and transition time distribution. In comparison, using

our method region 46 and 51 were automatically segmented

which correspond the two entry and exit zones. The time de-

lay between the two regions was estimated using xCCA as 9

frames, which is very close to the manual observation.
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4.5 Context-aware Person Re-identification

In this experiment, we compared the performance of match-

ing people across camera views using colour histogram (CH)

alone, CH+xCA, and CH+xCCA. Note that MCMC-BNSL

was excluded from this experiment since it is not able to

quantify the time delayed relationships between regional ac-

tivities.

The probe set consists of 250 individuals which were

matched against a gallery set of 1800 people extracted from

Station A dataset. The image of each person was manually

segmented and normalised to 48× 128 pixels. Each image

was then divided into Nh = 8 horizontal strips equally, from

which we extracted the concatenated colour histograms. To

select the best setting for CH, we varied the number of bins

Nbin from {8,16,32,64,128,256} and attempted both RGB

and YUV colour spaces. It turned out that RGB colour space

with 256 bins yielded the best result. Score returned by CH

was computed as S
a,b
bha (see Sec. 3.4), whilst score returned

by CH + other methods were computed by Eqn. (22). The

factor α that defines the size of search window was set to

10.

Given a probe image, we computed the matching scores

over all 1800 people and ranked them from the most likely

match to least likely one. To examine the recognition rate at

different ranks, a Cumulative Matching Characteristic (CMC)

curve (Gray and Tao 2008) with a cut-off rank of 30 was

plotted (Fig. 19). Example matches are given in Fig. 18. It

can be seen that despite the poor image quality and drastic

feature variations across camera views, good results were

obtained using both CH+xCCA and CH+xCA with CH+xCCA

yielding better result. In comparison the result of using CH,

i.e.visual appearance alone, was significantly worse. In par-

ticular, CH+xCCA yielded the best performance with ap-

proximately 94.00% of the queries generated a true match

in the top 20 rank, compared to 88.40% and 41.60% using

CH+xCA and CH alone.

Fig. 19 Cumulative Matching Characteristic (CMC) curve for

CH+xCCA, CH+xCA and CH.

Fig. 20 Comparing person re-identification result obtained using

CH+xCCA and CH alone. Given the probe image at the leftmost col-

umn, CH+xCCA found the same person in another camera view at rank

1, whilst CH can only find the true match at rank 59. Ambiguities due

to similar visual features presented by multiple objects are greatly re-

duced by introducing time delayed activity correlation as contextual

information.

Without considering the activity correlation and time de-

lay factor (CH alone), each person has to be compared against

all possible candidates. However, as shown in Fig. 20, pas-

sengers in the underground stations tend to wear clothes

with similar colours (e.g.white shirt with black trousers). It

is thus difficult to match the same person over a large cam-

era network by considering the colour information or any

visual appearance information alone. On the contrary, with

the inferred time delayed activity correlations employed as

contextual information (CH+xCCA or CH+xCA), the search

space and ambiguities were greatly reduced which has re-

sulted in significantly better recognition rate. Note that one

can also employ the time delays estimated using tracking-

based methods (Makris et al. 2004; Tieu et al. 2005) as con-

textual information to reduce the search space. However,

given low-frame rate videos with crowded scene, the esti-

mation becomes inaccurate due to unreliable tracking (see

Fig. 17(c)). Incorporating the time delays estimated thus will

harm instead of improving the person re-identification per-

formance.

4.6 Global Activity Modelling

Global activities were discovered by performing spectral clus-

tering on the regional activity affinity matrix P. For each

global activity, we employed 5000 frames to train an HMM

following the steps described in Sec. 3.5. The test set which

consists of the rest of the videos was used to evaluate the

performance of a model in temporal segmentation. The seg-

mentation result obtained using the proposed multi-view global

activity analysis was compared with those from (i) individ-

ual single camera view without activity-based scene decom-

position and (ii) single camera view with activity-based scene

decomposition.

For Station A dataset, two global activities were learned

by clustering P (see Fig. 12(a)), corresponding to the plat-

form activities observed by Cam 1, 2, 3 and Cam 4, 5, 6 re-

spectively. For Cam 1, 2, 3, it turned out that an HMM with

two hidden states gave the best BIC score in the model selec-

tion process. The two phases have clear semantic meaning:

phase one corresponds to the period when train is absent,
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Fig. 18 Example queries selected from the person re-identification experiment. The first image in each row is a probe image. It is

followed by top 20 results, sorted from left to right according to the ranking obtained using CH+xCCA, with the correct match highlighted

using a green bounding box. The ranks returned by the evaluated methods are included at the rightmost columns for comparison. Note

the visual ambiguity in the search space due to variations of pose, colours, lighting changes; as well as poor image quality caused by low

spatial resolution.
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(a)

(b)

(c)

(d)

Fig. 21 Station A dataset: example of phases inferred using (a) single

view activity analysis without activity-based scene decomposition, (b)

single view activity analysis with activity-based scene decomposition,

and (c) multi-view global activity analysis. The ground truth is shown

in (d). Y-axis represents the inferred phases and X-axis represents the

frame index. Only 3000 frames from the test set are shown.

(a) Phase 1

(b) Phase 2

Fig. 22 Station A dataset: example frames from the phases inferred

using our global activity analysis. Phase 1: train is absent and passen-

gers are waiting for train on the platform. Phase 2: train arrives and

passengers get on/off the train.

whilst phase two is the period when train is present. We

compared the phases inferred using the three methods with

the ground truth. The accuracy yielded by single view anal-

ysis (Cam 3) without scene decomposition was 73.40%. The

accuracy increased to 83.78% after we employed scene de-

composition on the single view analysis, whilst the proposed

method based on global activity analysis gave 97.90%. Ex-

amples of the inferred phases by different methods and some

example frames from the segmented phases are shown in

Fig. 21 and Fig. 22 respectively. We obtained similar re-

sults on Cam 4, 5, 6 – the accuracies were 86.59%, 91.70%

and 94.09% for methods without scene decomposition, with

scene decomposition and scene decomposition + single view

analysis.

(a)

(b)

(c)

(d)

Fig. 23 Station B dataset: example of phases inferred using (a) single

view activity analysis without activity-based scene decomposition, (b)

single view activity analysis with activity-based scene decomposition,

and (c) multi-view global activity analysis. The ground truth is shown

in (d). Y-axis represents the inferred phases and X-axis represents the

frame index. Only 3000 frames from the test set are shown.

(a) Phase 1

(b) Phase 2

Fig. 24 Station B dataset: example frames from the phases inferred us-

ing global activity analysis. Phase 1: passengers on the escalator track

are approaching the escalator exit; Phase 2: passengers move clear of

the escalator exit area.

We repeated the same procedures on Station B dataset.

Several global activities were discovered, which include the

platform activities monitored by Cam 6, 7 and Cam 8, 9,

as well as escalator activities captured by Cam 4, 5. Here,

we report the global activities that occurred at the escala-

tor area, from which regions 46 and 51 were automatically

detected as highly-correlated regions. A two-phase HMM

was selected in the automatic model selection process. The

two phases contain clear semantic meaning: phase one oc-

curs when passengers on the escalator track approach the es-

calator exit, whilst phase two takes place when passengers

move clear of the escalator exit area. In general, the results

achieved on Station B dataset were relatively poorer com-

pared to those obtained on Station A dataset as occlusion
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problem was more severe. In particular, single view analy-

sis (Cam 4) without and with scene decomposition yielded

similar results on this dataset, giving accuracies of 67.32%

and 67.10% respectively. Scene decomposition failed to im-

prove the result on single view analysis because region 46 in

Cam 4 (see Fig. 9(d)) only occupies a small portion of many

regions in the whole view. The activity model was thus dom-

inated by activity patterns learned from other regions. Dif-

fering from the platform scene in Station A dataset, there

are multiple global activities in the scene captured by Cam 4

and 5, namely passengers getting upwards and downwards.

Using all regions blindly thus would not help improve the

segmentation accuracy. Overall, the proposed method based

on global activity analysis gave the best accuracy of 79.08%.

Examples of the inferred phases by different methods and

some example frames from the segmented phases are shown

in Fig. 23 and Fig. 24 respectively.

The results on both datasets demonstrate the effective-

ness of our global activity modelling based on the learning

of regional activity correlations. In particular, single view

activity analysis was susceptible to noise and visual am-

biguities due to heavy occlusions and low frame rate. As

compared to single view activity analysis, our global activity

modelling utilises evidences collected from multiple corre-

lated regions across camera view. It therefore reduced visual

ambiguities, resulting in a more accurate segmentation re-

sult.

4.7 Computational Cost

The computational cost of each component of the proposed

approach is analysed below:

– Activity-based scene decomposition: A total of B(B−

1)/2 computations are required to obtain the pairwise

correlation distances among local activity patterns of each

block pair. The spectral clustering involves computation

of eigenvectors of affinity matrix A (Eqn. (6)) with com-

putational complexity of O(B3).

– Cross canonical correlation analysis: To obtain each ele-

ment in a regional activity affinity matrix (Eqn. (15)) and

a time delay matrix (Eqn. (16)), a regional time-series is

shifted against another regional time-series and canoni-

cal correlation is performed at each shifting step. A total

of 2T −1 shifting steps are required where T is the total

of training frames. However, if we bound the maximum

time delay as τmax, the total number of shifting steps can

be reduced to τmax−1. The computational cost of canon-

ical correlation analysis is dominated by singular value

decomposition (SVD). However, since Γ in Eqn. (13) is

small, the complexity of SVD, O(Γ 3) is low.

In practice, on a 2.8GHz single-core machine, the computa-

tion of correlation distances in Matlab takes approximately

6 minutes on each camera view, whilst the spectral cluster-

ing implemented in C code requires 7 seconds. For xCCA,

Matlab implementation takes approximately 12 minutes on

Station A dataset and 30 minutes on Station B datasets.

4.8 Failure Modes, Limitations and Possible Extensions

There are a number of areas to improve on:

(i) As discussed in Section.4.4, if a region is located far

away from camera, our method may fail to infer its con-

nection with other regions in the camera network due to

lack of visual information.

(ii) The activity correlations in the current framework are

assumed to be static once learned. It is desirable to for-

mulate a computationally tractable incremental learning

framework to address the dynamic changes of regions

and their correlations. This is a non-trivial problem and

is part of our ongoing work.

(iii) The discovered activity correlations are limited to pair-

wise correlations and multiple dependencies in a global

context are not considered. Thus, some redundant corre-

lations caused by noise may affect the accuracy in activ-

ity understanding. This problem could be addressed by

formulating a structure learning method for global opti-

misation on activity correlations.

(iv) It is assumed in our approach that there is only one

delay time between two regions. In most cases, this as-

sumption is valid because objects with different speeds

(such as cars and pedestrians) appear in different regions,

and their activities will thus be separated into different

regions using our scene decomposition method. How-

ever, there are still cases where objects with different

speeds and directions appear in the same location (e.g.mid-

dle of a traffic intersection). We did not consider mod-

elling multiple delay modes because the features we used

do not capture motion speed and direction due to videos

with low temporal and spatial resolution. Nonetheless, if

object speed and direction can be measured given videos

with higher frame rate, it is straightforward to extend

our xCCA framework to capture multiple delay and cor-

relation modes. Specifically, we could decompose dif-

ferent directions into different bins (e.g.direction 001 =

0◦ - 15◦, direction 010 = 15◦ - 30◦, etc.). For each de-

composed direction, we could then perform xCCA and

model the correlation surface of different speeds and time

delays.

There are several possible extensions to the proposed ap-

proach. Firstly, topology inference is performed in an unsu-

pervised manner. Nevertheless, if coarse or partial informa-

tion on a camera topology is available, it can be integrated

into the proposed framework. For example, one can incorpo-

rate this information into training stage in a form of regulari-

sation, e.g.increasing the correlation value between a region
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pair if their connection is known and penalising the correla-

tion value if otherwise. Secondly, global anomaly detection,

i.e.detection of abnormal events across camera views is not

attempted in this study, which is an important application

of multi-camera activity understanding. Finally, while we

have demonstrated the effectiveness of our simple feature

representation on challenging surveillance videos, including

more sophisticated features is expected to improve the time-

delayed correlation analysis when they can be computed re-

liably.

5 Conclusions

In this work we have presented a novel approach to multi-

camera activity understanding by discovering and modelling

the correlations with unknown time delays between activi-

ties observed within and across non-overlapping camera views.

In particular, we introduced Cross Canonical Correlation Anal-

ysis to detect and quantify correlation and temporal relation-

ships between partial observations across local regions. Ex-

perimental results have shown that the time delayed activ-

ity correlations are not only useful for inferring the spatial

and temporal topology of a camera network, but also impor-

tant as contextual information to facilitate more robust and

accurate person re-identification, global activity interpreta-

tion, and video temporal segmentation. The proposed frame-

work does not rely on either inter-camera or intra-camera

tracking. Consequently, as demonstrated through our exper-

iments, it can be applied to the most challenging surveil-

lance videos, featured with heavy occlusions due to enor-

mous number of objects in the scenes, as well as poor image

quality caused by low video frame rate and image resolution.
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