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Introduction Re-id by Manifold Ranking (MRank)

Examples

Person Re-Identification by Manifold Ranking

Problem: 
Re-identify a person at different locations and time. 

[1] B. Prosser, W. Zheng, S. Gong, and T. Xiang, “Person re-identification by support vector ranking,” in BMVC, 2010
[2] W. Zheng, S. Gong, and T. Xiang, “Re-identification by relative distance comparison,” TPAMI, 2012
[3] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Scholkopf, “Ranking on data manifolds,” in NIPS, 2004
[4] X. Zhou, M. Belkin, and N. Srebro, “An iterated graph Laplacian approach for ranking on manifolds,” in SIGKDD, 2011
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Probe at Location A

Given a set of gallery 
images at Location B, 

who is the target?
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Ranked Gallery ImagesRanked Gallery Images

Existing learning-to-rank methods are not scalable: 
• The learning process requires exhaustive supervision on pairwise 

individual correspondence between camera pair. 
• The value of unlabelled gallery instances is generally overlooked. 

Contributions: 
• Investigate the importance of using unlabelled gallery data for rank 

diffusion.
• Systematically formulate and validate manifold ranking models [3, 4].
• Performance significantly boosted by manifold ranking (14% 

performance gain at rank-1 matching rate)

Probe Ranked Gallery Images Probe

Highlights: 
• Performance is measured using matching rate at rank-r = the expectation of 

finding the correct match in the top r matches
• MRank can be initialised with supervised distance metrics, denoted as 

MRank-Lu (dist) and MRank-Ln (dist) for unnormalised and normalised 
Laplacians

• A relative improvement of 14% at rank-1 recognition rate over the state-of-
the-art learning to rank methods (RankSVM [1] and PRDC [2]).
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β is an important parameter that controls the convergence 
of manifold ranking.
Fig. (a) Matching rate curves with β = 10-2

Fig. (b) Area under the curve with β varied from 10-5 to 10.

* Unnormalised Laplacian, Lu , is less sensitive to β in 
comparison to normalised Laplacian, Ln . 

Fig.(a)

Fig. (b)

The leftmost image is the probe. The true match within the ordered gallery candidates is highlighted with red border.
MRank gains better retrieval results as compared to PRDC [2] without manifold ranking. (And higher visual consistency at top ranks).

Lu = Unnormalised Laplacian; Ln = normalised Laplacian; r = rank; p = number of person in a test set
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Step 1. Feature extraction

Step 2. Compute pairwise affinity, A, 
between all n gallery images and 
probe

Step 3. Estimate graph Laplacian

Step 4. Manifold ranking

Manifold ranking based on vector c:

where
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Unlabelled gallery 
in manifold space

Rank propagation
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2784-dimensional 
feature vector:

Normalised:

Unnormalised:

More similar Less similar
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