From Semi-Supervised to Transfer Counting of Crowds

Chen Change Loy The Chinese University of Hong Kong ccloy@ie.cuhk.edu.hk

Shaogang Gong Queen Mary University of London sgg@eecs.qmul.ac.uk

Tao Xiang **Queen Mary University of London** txiang@eecs.qmul.ac.uk

1 Introduction

Problem:

To produce accurate person counting given only sparse labelled data in crowded scenes.

State-of-the-art methods:

- Take a regression approach.
- Require exhaustive frame-wise labelling.
- Given a new scene, a model must be learned from scratch, repeating the laborious annotation process.

Contributions:

- Develop a unified active and semi-supervised crowd counting regression model using only a handful of annotations & lots of unlabelled data, to eliminate exhaustive data labelling.
- Formulate a transfer learning model based on crowd data manifold regularisation to utilise labelled crowd data from other crowd scenes.

Our Solution

Features:

A set of perspective normalised low-level features similar to [1], such as foreground region and edge map, from each frame.

Training data:

• Some of them are labelled $\mathcal{L} = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ but most of them are unlabelled $\mathcal{U} = \{\mathbf{x}_j\}_{j=l+1}^{j=l+u}$ where l and u are the number of labelled and unlabelled samples.

Key components:

- Active point selection: Select automatically the most informative image frames for count annotation.
- Semi-supervised counting: Exploit the underlying geometric structure of abundant unlabelled data and temporal continuity of crowd pattern.
- *Transfer counting*: Exploit labelled source data for counting in novel target scenes.

Semi-supervised & Transfer Counting

Semi-supervised counting:

Step-1: Loss function

$$f^* = \operatorname{argmin}_{f \in \mathcal{H}_K} \frac{1}{l} \sum_{i=1}^{l} \left[y_i - f(\mathbf{x}_i) \right]^2 + \left[\lambda_A ||f||_K^2 + \left| \lambda_I \mathbf{f}^{\mathsf{T}} B \mathbf{f} \right| + \left| \lambda_T \mathbf{f}^{\mathsf{T}} L \mathbf{f} \right|$$

- 1. Imposes smoothness to the possible solutions
- 2. Intrinsic structure of the crowd patterns
- 3. A penalty term to enforce temporal smoothness

where λ_A , λ_I and λ_T control the function complexity in the ambient space, intrinsic geometry of $p(\mathbf{x})$, and temporal space, respectively. B represents the Hessian energy, and L is the normalised Laplacian of temporal space, which is estimated with affinity matrix whose elements are $A_{ij} = \exp\left(\left(-\|t_i - t_j\|^2\right)/2\sigma^2\right)$

Step-2: Crowd density is estimated as

$$f^*(\mathbf{x}^*) = \sum_{i}^{l+u} \alpha_i K(\mathbf{x}^*, \mathbf{x}_i) + b$$

where \mathbf{x}^* is the unseen point and $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_{l+u}]^{\mathsf{T}}$ is the expansion coefficient vector and b is the bias term.

Transfer counting:

Step-1: Feature level alignment

Learn a function to project source data to a target scene $q: \mathbf{\hat{x}}^{ ext{source}}
ightarrow \mathbf{\hat{x}}^{ ext{target}} \in \mathbb{R}^d$

Step-2: Cross domain manifold estimation

Use the enlarged training set $g(X^{ ext{source}}) \cup X^{ ext{target}}$ to (1) estimate a shared manifold, (2) learn a regression by the loss function above.

Advantages of cross domain manifold:

- to constrain the smoothness of solution w.r.t intrinsic geometry of the cross domain data space.
- to make the aligned source data less susceptible to noise.

Evaluations

Datasets

Effect of # labelled and # unlabelled data

Comparison between the KRR (kernel ridge regression) baseline regression and the proposed semi-supervised regression (SSR) method.

(a) ucsd

Method	iviean Squared Erro
KRR	19.282 ± 3.83
SSR (manifold)	18.417 ± 3.35
SSR (temporal)	18.791 ± 3.53
SSR (manifold+temporal)	18.112 ± 3.38
SSR (manifold+temporal+selection)	17.853 ± 2.38

(c) hallway

Method	Mean Squared Erro
KRR	7.971 ± 1.00
SSR (manifold)	7.389 ± 1.18
SSR (temporal)	6.828 ± 0.72
SSR (manifold+temporal)	5.546 ± 0.30
SSR (manifold+temporal+selection)	5.342 ± 0.16

Comparison vs. the state-of-the-arts:

Consistently outperforms existing methods given sparse labelled samples

Method	# train samples	ucsd	mall	hallway		
Gaussian Processes	50	11.10	49.83	27.56		
Regression [1]	Full	7.68	14.88	5.60		
Cumulative Attribute	50	9.27	22.19	5.53		
Ridge Regression [2]	Full	7.19	14.80	5.00		
SSR	50	7.06	17.85	5.34		
Massured in mass squared array (MCC)						

Transfer counting comparison:

- Transferring data without cross domain manifold (i.e. KRR) gives worse results.
- With cross domain manifold, SSR reduces the MSE further (in comparison to without transfer)

KRR SSR

Course	Torget	Without Transfer Counting		
Source	urce Target	KRR	SSR	
	hallway	8.356 ± 0.70	6.285 ± 0.54	
	ucsd	8.538 ± 1.22	7.732 ± 0.93	
Source	Target	With Transf	er Counting	
Source	Target	KRR	SSR	
ucsd	hallway	16.848 ± 3.27	5.984 ± 0.40	
hallway	ucsd	23.010 ± 5.66	7.321 ± 1.86	

Measured in mean squared error (MSE)

Active Point Selection

Given a fixed number of labelling budget, the most representative frames (in the sense of covering different crowd densities/counts) are the most useful ones to label.

Step-1: Construct an affinity matrix

$$A \in \mathbb{R}^{(l+u)\times(l+u)}$$
$$A_{ij} = \exp\left(\left(-\|\mathbf{x}_i - \mathbf{x}_j\|^2\right)/2\sigma^2\right)$$

Step-2: Construct normalised Laplacian $L=D_{r-\frac{1}{2}}^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ where D is a diagonal matrix with $D_{ii} = \sum_{j}^{\infty}$ and perform spectral clustering.

[1] A. Chan and N. Vasconcelos. Counting people with low-level features and Bayesian regression. TIP, 21(4):2160–2177, 2012 [2] K. Chen, S. Gong, T. Xiang, and C. C. Loy. Cumulative attribute space for age and crowd density estimation. In CVPR, 2013

Examples

- Compare counting accuracy between the KRR and our semi-supervised method SSR.
- SSR achieves 20% reduction in mean squared error with just 10% of labelled samples as compared to the KRR.

