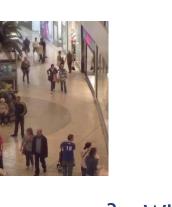


Cumulative Attribute Space for Age and Crowd Density Estimation

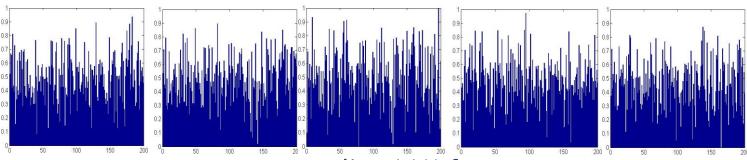
Ke Chen¹, Shaogang Gong¹, Tao Xiang¹, and Chen Change Loy²

1.Queen Mary, University of London; 2. The Chinese University of Hong Kong {cory, sgg, txiang}@eecs.qmul.ac.uk; ccloy@ie.cuhk.edu.hk


INTRODUCTION

Problems:

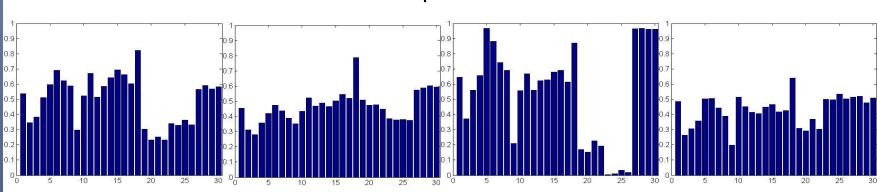
Crowd counting


1. Feature Variation

Why Challenging:

Age estimation

different people with the same age


corresponding AAM features

- ✓ Extrinsic condition: Lighting conditions; Viewing angles
- ✓ Intrinsic condition: aging processing of different people glasses, hairstyle, gender, ethnicity

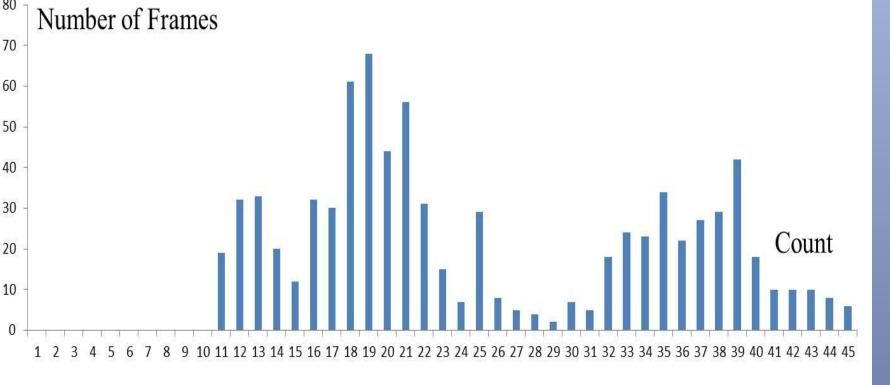
Crowd density estimation

The same person count

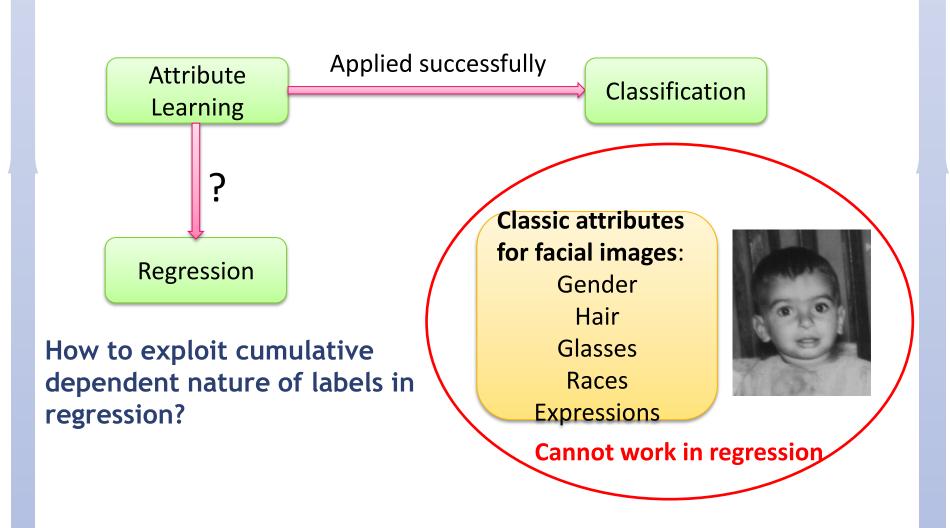
corresponding segment+edge+texture features

- ✓ Extrinsic condition: Lighting conditions; Viewing angles
- ✓ Intrinsic condition: occlusion; density distribution in the scene

2. Sparse and imbalanced data

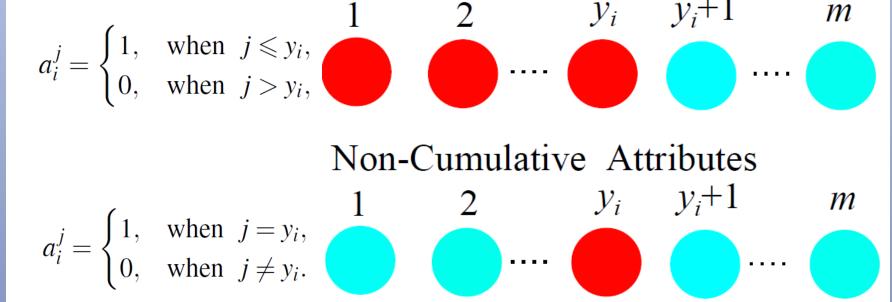


Data Distribution of FG-NET Dataset

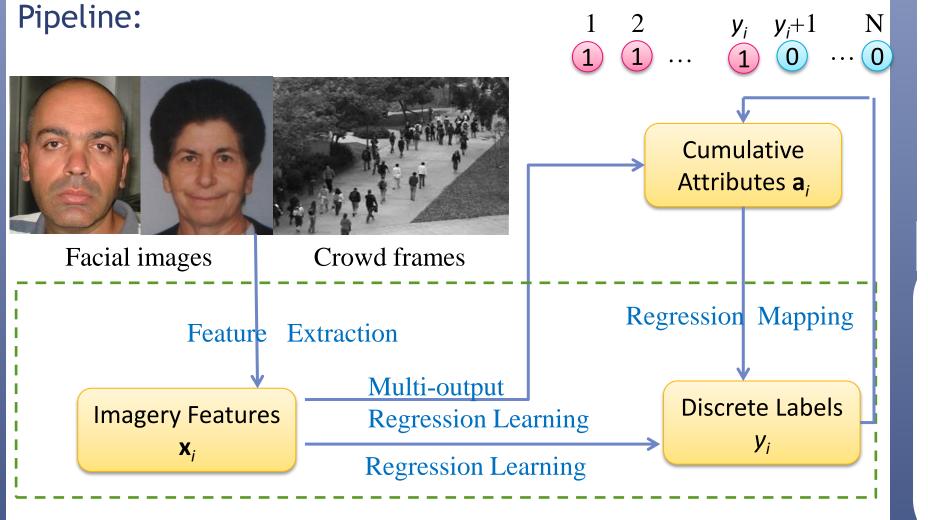


Data Distribution of UCSD Crowd Dataset

CONTRIBUTIONS


- ✓ Propose an attribute representation for regression
- Our cumulative attributes:
 - a) has clear semantic meaning;
 - b) discriminative;
 - c) do not need additional attribute annotation
- Address sparse & imbalanced data and feature variation problems
- Extensive experiments on two applications: facial age estimation and crowd counting

METHODOLOGY



Cumulative Attributes:

Definition:

Cumulative Attributes

Conventional frameworks

Model Learning:

✓ Joint attribute learning

min
$$\frac{1}{2} \|\mathbf{w}^j\|_2^2 + C \sum_{i=1}^N loss(a_i^j, f^j(\mathbf{x}_i)),$$

where loss function is quadratic funtion.

min
$$\frac{1}{2} \|\mathbf{W}\|_F^2 + C \sum_{i=1}^N \|\mathbf{a}_i^T - (\mathbf{x}_i^T \mathbf{W} + \mathbf{b})\|_F^2$$
,

In light of this, the close-form solution of the above formulation can be obtained

✓ Regression Mapping

- with attribute representation as input
- is not limited to a specific regression model

EXPERIMENTS

Comparative Evaluation:

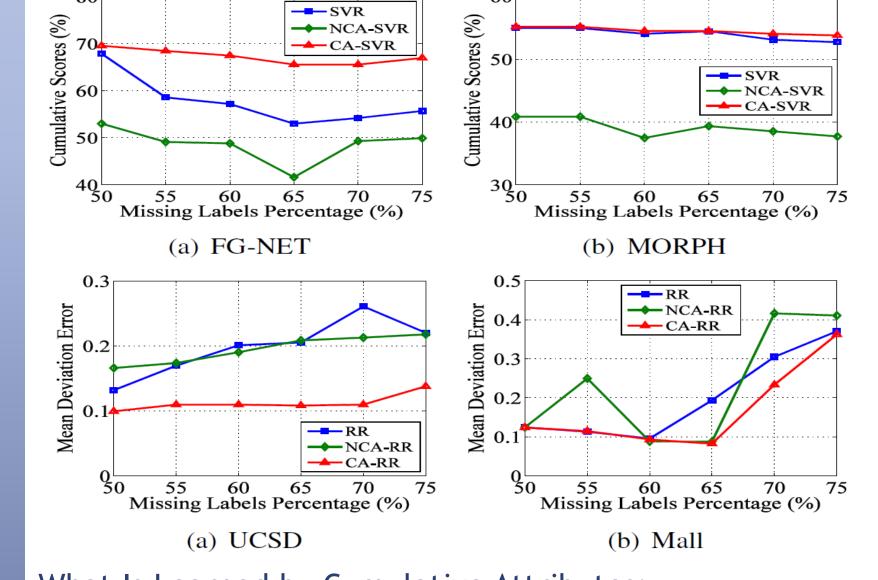
Method	FG-NET [13]		MORPH [7]		
	mae	cs	mae	cs	
AGES [13]	6.77	_	8.83	_	
RUN [33]	5.78	_	_	_	
Ranking [32]	5.33	_	_	_	
RED-SVM [6]	5.24	_	6.49	_	
LARR [15]	5.07	_	_	_	
MTWGP [35]	4.83	_	6.28	_	
OHRank [7]	4.85	74.4%	5.69	56.3%	
SVR [15]	5.66	68.0%	5.77	57.1%	
CA-SVR (Ours)	4.67	74.5 %	5.88	57.9 %	

Age Estimation

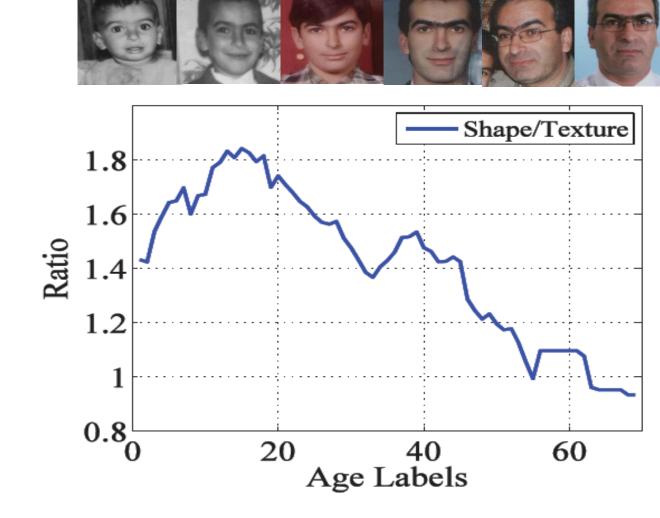
Method	UCSD [4]			Mall [8]		
	mae	mse	mde	mae	mse	mde
LSSVR [31]	2.20	7.29	0.107	3.51	18.2	0.108
KRR [1]	2.16	7.45	0.107	3.51	18.1	0.108
RFR [23]	2.42	8.47	0.116	3.91	21.5	0.121
GPR [4]	2.24	7.97	0.112	3.72	20.1	0.115
RR [8]	2.25	7.82	0.110	3.59	19.0	0.110
CA-RR (Ours)	2.07	6.86	0.102	3.43	17.7	0.105

Crowd Counting

Cumulative (CA) V.S. Non-Cumulative (NCA):


Methods	FG-N	ET [13]	MORPH [7]		
	mae	cs	mae	cs	
NCA-SVR	8.95	41.8%	7.28	44.2%	
CA-SVR	4.67	74.5 %	5.88	57.9 %	

Age Estimation


Methods	UCSD [4]			Mall [8]		
	mae	mse	mde	mae	mse	mde
NCA-RR	2.85	11.9	0.137	4.31	25.8	0.131
CA-RR	2.07	6.86	0.102	3.43	17.7	0.105

Crowd Counting

Robustness Against Sparse and Imbalanced Data:

What Is Learned by Cumulative Attributes:

Shape plays a more important role than texture when one is younger.